
The 6th Olympiad of Metropolises
Mathematics
Solutions. Day 2

Problem 4. Six real numbers 𝑥1 < 𝑥2 < 𝑥3 < 𝑥4 < 𝑥5 < 𝑥6 are given. For each triplet of
distinct numbers of those six Vitya calculated their sum. It turned out that the 20 sums are
pairwise distinct; denote those sums by

𝑠1 < 𝑠2 < 𝑠3 < ⋯ < 𝑠19 < 𝑠20 .

It is known that 𝑥2 + 𝑥3 + 𝑥4 = 𝑠11, 𝑥2 + 𝑥3 + 𝑥6 = 𝑠15 and 𝑥1 + 𝑥2 + 𝑥6 = 𝑠𝑚. Find all possible
values of𝑚.

Answer: 𝑚 = 7.

Solution. Observation 1. Any sum containing 𝑥1 is less than any sum not containing 𝑥1.

Indeed, note that 𝑥2 + 𝑥3 + 𝑥4 is the smallest among all 10 sums not containing 𝑥1. Since it is
equal to 𝑠11, all the other 9 sums that do not contain 𝑥1 must be equal to 𝑠12, 𝑠13, …, 𝑠20 in some
order. Hence, all smaller sums, from 𝑠1 to 𝑠10, must contain 𝑥1.

Observation 2. Consider the sums without 𝑥1. Among them any sum containing 𝑥6 is greater
than any sum not containing 𝑥6.

Indeed, similarly, note that 𝑥2 +𝑥3 +𝑥6 is the smallest among all 6 sums that do not contain 𝑥1,
but contain 𝑥6. Since it is equal to 𝑠15, all the other 5 sums containing 𝑥6, but not 𝑥1, must be
equal to 𝑠16, 𝑠17, …, 𝑠20 in some order. Then all smaller sums, from 𝑠11 to 𝑠14, do not contain 𝑥6.

Observation 3. Any pair of triplets with the sum 𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 + 𝑥5 + 𝑥6 is distributed
symmetrically, i.e., if the sum of a triplet is 𝑠𝑖, the sum of the complementary triplet would be
𝑠21−𝑖.

(This one is obvious.)

Now we are ready to finish the solution. Consider 𝑥3 + 𝑥4 + 𝑥5.

• According to observation 1 this sum is larger than all 10 sums containing 𝑥1.

• By observation 2 this sum is less than any of 6 sums without 𝑥1 but with 𝑥6.

• Among the other 4 sums (without both 𝑥1 and 𝑥6) this sum is clearly the greatest.

Thus we have 𝑥3 + 𝑥4 + 𝑥5 = 𝑠14. Then 𝑥1 + 𝑥2 + 𝑥6 = 𝑠7 by observation 3.
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Remark 1. It is easy to construct such numbers. For example, the numbers −32, 1, 2, 4, 8, 16 are
appropriate. Their sums in all combinations are different, and claims 1 and 2 hold true; these
claims are equivalent to the conditions 𝑥2 + 𝑥3 + 𝑥4 = 𝑠11 and 𝑥2 + 𝑥3 + 𝑥6 = 𝑠15.

Remark 2. The condition of the problem allows one to order all the sums, except for two pairs.
Denoting 𝑋𝑖𝑗𝑘 = 𝑥𝑖 + 𝑥𝑗 + 𝑥𝑘, one can prove that

𝑋123 < 𝑋124 < (𝑋125, 𝑋134) < 𝑋135 < 𝑋145 < 𝑋126 < 𝑋136 < 𝑋146 < 𝑋156 <
𝑋234 < 𝑋235 < 𝑋245 < 𝑋345 < 𝑋236 < 𝑋246 < (𝑋346, 𝑋256) < 𝑋356 < 𝑋456 .

Problem 5. There is a safe that can be opened by entering a secret code consisting of 𝑛 digits,
each of them is 0 or 1. Initially, 𝑛 zeros were entered, and the safe is closed (so, all zeros is not
the secret code).

In one attempt, you can enter an arbitrary sequence of 𝑛 digits, each of them is 0 or 1. If the
entered sequence matches the secret code, the safe will open. If the entered sequence matches
the secret code in more positions than the previously entered sequence, you will hear a click. In
any other cases the safe will remain locked and there will be no click.

Find the smallest number of attempts that is sufficient to open the safe in all cases.

Answer: 𝑛.

Solution. Example. We present an algorithm opening the safe in 𝑛 attempts.

By 𝐴 = (𝑎1, 𝑎2,… , 𝑎𝑛) denote the secret code. Also set

𝐴𝑘 = (𝑎1, 𝑎2,… , 𝑎𝑘−1, 1, 0, 0,… , 0) ,

in particular, 𝐴0 = (0, 0, 0, 0,… , 0).

Let us show by induction on 𝑘 for 𝑘 = 1, 2,… , 𝑛 that on the 𝑘-th attempt (if the safe was not
opened earlier) we can enter the sequence 𝐴𝑘 (for this purpose, it is sufficient to find 𝑎𝑘 on the
𝑘-th attempt).

This gives the required algorithm: indeed, if 𝑚 is the maximal index for which 𝑎𝑚 = 1, then
𝐴 = 𝐴𝑚, and the safe is opened on the𝑚-th attempt.

Base 𝑘 = 1 is trivial.

Induction step. Let us prove the step 𝑘 → 𝑘+1. Assume that the safe is still closed after the 𝑘-th
attempt.

Note that𝐴𝑘 differs of𝐴𝑘−1 in the 𝑘-th position, and possibly in onemore, the (𝑘−1)-th position,
but in this position 𝐴𝑘 matches 𝐴. Hence, if 𝑎𝑘 = 0, then 𝐴𝑘 is not “closer” (by the number of
positions, in which the sequences match) to𝐴 than𝐴𝑘−1. If 𝑎𝑘 = 1, then𝐴𝑘 is “closer” to𝐴 than
𝐴𝑘−1. Thus we hear the click after the 𝑘-th attempt if and only if 𝑎𝑘 = 1. Therefore, after the
𝑘-th attempt we know 𝑎𝑘.
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Estimate. After each attempt, we will estimate the number of possible (i.e., not contradicting the
outcomes of all past attempts, but also not tried yet) variants for the secret code. Initially, there
are exactly 2𝑛−1 possible variants (all sequences of length 𝑛 consisting of zeros and ones, except
for the zero sequence). Assume that after the 𝑘-th attempt there are at least 2𝑛−𝑘 − 1 possible
variants for the code (for 𝑘 = 0 it is already shown). Then we will prove that after the (𝑘 + 1)-
th attempt, regardless of the entered sequence, at least one of the outcomes will leave at least
2𝑛−𝑘−1 − 1 possible variants.

Let 𝑏 be the sequence that was entered on the (𝑘 + 1)-th attempt. Let us divide the possible (be-
fore this attempt) variants into 3 groups: coinciding with 𝐵 (either one or zero such variants);
those for which a click should be heard; and those for which there will be no click. (Each vari-
ant will fall into exactly one such group.) Let us take from the last two groups the one with
the largest number of variants, and then with the corresponding outcome we will have at least
1
2 ((2

𝑛−𝑘 − 1) − 1) = 2𝑛−𝑘−1 − 1 possible variants.

Thus, after 𝑛 − 1 attempts, there is an outcome with at least one remaining possible variant,
which means that the safe will still be closed.

Another way to prove estimate. Let us prove that 𝑛 − 1 attempts will not be sufficient.

Assume the contrary: let there be a written algorithm of opening the safe in no more than 𝑛 − 1
attempts (steps). This algorithm should have the following structure. At the 1st step, some
sequence𝐵 is entered. If the safe has opened, thenwe declare “success” and finish. Otherwise, at
the 2nd step, the algorithm has 2 branches: in case the click was heard, 𝐵1 is entered, otherwise
𝐵2 is. At each next step, in case of failure, we have two variants of the entered sequence.

In general, no more than 2𝑘−1 sequences are entered in all branches of the algorithm at the 𝑘th
step. In total, no more than 1 + 2 + 4 + ⋯ + 2𝑛−2 = 2𝑛−1 − 1 different sequences are entered
in all branches of the algorithm. But since each of the 2𝑛 − 1 sequences (except the zeros) may
turn out to be the secret code, there will be a case in which such an algorithm will not handle
the safe.

Problem 6. Let𝐴𝐵𝐶𝐷 be a tetrahedron and suppose that𝑀 is a point inside it such that∠𝑀𝐴𝐷 =
∠𝑀𝐵𝐶 and ∠𝑀𝐷𝐵 = ∠𝑀𝐶𝐴. Prove that

𝑀𝐴 ⋅ 𝑀𝐵 +𝑀𝐶 ⋅ 𝑀𝐷 < max(𝐴𝐷 ⋅ 𝐵𝐶, 𝐴𝐶 ⋅ 𝐵𝐷) .

Solution. Lemma.
∠𝐴𝑀𝐷 + ∠𝐵𝑀𝐶 + ∠𝐴𝑀𝐶 + ∠𝐵𝑀𝐷 > 2π .

Proof of the lemma. Indeed, let the line 𝐷𝑀 intersect the plane 𝐴𝐵𝐶 at point 𝐸, and the line
𝐵𝐸 intersect the segment 𝐴𝐶 at point 𝐹 (fig. 1). Then we have ∠𝐴𝑀𝐶 + ∠𝐵𝑀𝐶 = ∠𝐴𝑀𝐹 +
(∠𝐶𝑀𝐹 + ∠𝐵𝑀𝐶) > ∠𝐴𝑀𝐹 + ∠𝐵𝑀𝐹 = (∠𝐴𝑀𝐹 + ∠𝐹𝑀𝐸) + ∠𝐵𝑀𝐸 > ∠𝐴𝑀𝐸 + ∠𝐵𝑀𝐸 =
(π−∠𝐴𝑀𝐷)+(π−∠𝐵𝑀𝐷), hence∠𝐴𝑀𝐶+∠𝐵𝑀𝐶+∠𝐴𝑀𝐷+∠𝐵𝑀𝐷 > 2π. Lemma is proven.
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Figure 1: for the solution of problem 6

According to lemma, (∠𝐴𝑀𝐷+∠𝐵𝑀𝐶)+(∠𝐴𝑀𝐶+∠𝐵𝑀𝐷) > 2π, whichmeans either∠𝐴𝑀𝐶+
∠𝐵𝑀𝐷 > π or ∠𝐴𝑀𝐷 + ∠𝐵𝑀𝐶 > π. Without loss of generality, we will assume that the first
case holds.

𝑀𝐴 ⋅ 𝑀𝐷
𝑀𝐶 ⋅ 𝑀𝐵

𝑀𝐴 ⋅ 𝑀𝐵

𝐴𝐶 ⋅ 𝑀𝐵𝐵𝐷 ⋅ 𝑀𝐴
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Figure 2: for the solution of problem 6

Wemultiply the lengths of the sides of the triangles𝐴𝑀𝐶 and 𝐵𝑀𝐷 by 𝐵𝑀 and𝐴𝑀, respectively,
and from the resulting triangleswe compose the shape shown in fig. 2a. Since∠𝑆𝑄𝑇 = ∠𝑀𝐷𝐵 =
∠𝑀𝐶𝐴 = ∠𝑇𝑅𝑆, the points 𝑆, 𝑄, 𝑅 and 𝑇 lie on one circle.

We have∠𝑅𝑇𝑆+∠𝑄𝑆𝑇 = ∠𝐴𝑀𝐶+∠𝐵𝑀𝐷 > π, therefore, the rays𝑄𝑆 and 𝑅𝑇 intersect at some
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point 𝑃, as in fig. 2b. According to Ptolemy’s theorem, we have

𝑄𝑅 ⋅ 𝑀𝐴 ⋅ 𝑀𝐵 +𝑀𝐴 ⋅ 𝑀𝐷 ⋅ 𝑀𝐶 ⋅ 𝑀𝐵 = 𝐴𝐶 ⋅ 𝑀𝐵 ⋅ 𝐵𝐷 ⋅ 𝑀𝐴 ,

therefore,
𝑄𝑅 +𝑀𝐶 ⋅ 𝑀𝐷 = 𝐴𝐶 ⋅ 𝐵𝐷 . (1)

The similarity of triangles 𝑃𝑄𝑅 and 𝑃𝑇𝑆 implies

𝑄𝑅
𝑆𝑇 =

√
𝑆(𝑃𝑄𝑅)
𝑆(𝑃𝑆𝑇) > 1 . (2)

From (1) and (2) we obtain 𝐴𝐶 ⋅ 𝐵𝐷 > 𝑆𝑇 +𝑀𝐶 ⋅ 𝑀𝐷 = 𝑀𝐴 ⋅ 𝑀𝐵 +𝑀𝐶 ⋅ 𝑀𝐷.

Another solution. After we reduce the problem to the case ∠𝐴𝑀𝐶 + ∠𝐵𝑀𝐷 > π, we can finish
the solution differently.

𝑂

𝑈 𝑉𝑇 𝑆
Figure 3: for another solution of problem 6

Let us construct triangle𝑂𝑈𝑉 with∠𝑂𝑈𝑉 = π−∠𝐴𝑀𝐶 and∠𝑂𝑉𝑈 = π−∠𝐵𝑀𝐷. There exist
points 𝑇, 𝑆 on the line 𝑈𝑉 such that△𝑇𝑈𝑂 ∼△𝐶𝑀𝐴 and△𝑆𝑉𝑂 ∼△𝐷𝑀𝐵; the location of
points will be as shown on fig. 3.

From the equality of the angles ∠𝑈𝑇𝑂 = ∠𝑉𝑆𝑂 we obtain that the triangle 𝑇𝑂𝑆 is isosceles.
Also

𝑂𝑇2 = 𝑂𝑈2 + 𝑇𝑈 ⋅ 𝑈𝑆 and 𝑂𝑇2 = 𝑂𝑉2 + 𝑇𝑉 ⋅ 𝑉𝑆

(for example, since −𝑇𝑈 ⋅ 𝑈𝑆 is the power of point 𝑈 with respect to the circle centered in 𝑂
with radius 𝑂𝑇 = 𝑂𝑆; and similarly for 𝑉).

Without loss of generality, we assume 𝑂𝑉 ≤ 𝑂𝑈 ; then

𝑂𝑇 ⋅ 𝑂𝑆 = 𝑂𝑇2 = 𝑂𝑈2 + 𝑇𝑈 ⋅ 𝑈𝑆 > 𝑂𝑈 ⋅ 𝑂𝑉 + 𝑇𝑈 ⋅ 𝑉𝑆 ,

which by similarities is equivalent to 𝐴𝐶 ⋅ 𝐵𝐷 > 𝑀𝐴 ⋅ 𝑀𝐵 +𝑀𝐶 ⋅ 𝑀𝐷.
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