
6-я Олимпиада Мегаполисов
Математика

Решения. День 1

Задача 1. На доске написано целое положительное число. Раз в минуту Максим прибав-
ляет к числу на доске какой-то его положительный делитель, записывает на доску ре-
зультат и стирает прошлое число. При этом ему запрещено дважды подряд прибавлять
одно и тоже число. Докажите, что онможет действовать так, чтобы на доске когда-нибудь
оказался точный квадрат.

Первое решение. Пусть изначально на доске было написано число 𝑘. Будем считать, что
𝑘 ⩾ 2 (в случае 𝑘 = 1 на доске уже записан точный квадрат). Максим может выполнить
следующую последовательность действий:

𝑘 𝑘−→ 2𝑘 2𝑘−→ 2 ⋅ 2𝑘 2−→ 2 ⋅ (2𝑘 + 1) 2𝑘+1−−−→ 3 ⋅ (2𝑘 + 1) 3−→

3 ⋅ (2𝑘 + 2) 2𝑘+2−−−→ 4 ⋅ (2𝑘 + 2) 4−→ 4 ⋅ (2𝑘 + 3) 2𝑘+3−−−→ …

… 𝑘2−1−−−→ (𝑘2 − 2𝑘 + 1)(𝑘2 − 1) 𝑘2−2𝑘+1−−−−−−→ (𝑘2 − 2𝑘 + 1) ⋅ 𝑘2 ,

где над каждой стрелкой указано прибавляемое число (очевидно, что любые два числа,
прибавляемые подряд, различны). Осталось заметить, что (𝑘2−2𝑘+1)⋅𝑘2 = (𝑘(𝑘−1))2.

Второе решение. Пусть изначально на доске было написано число 𝑘. Докажем, что Мак-
сим может получить любое число, делящееся на 6 и большее 2𝑘. Из этого легко будет
следовать утверждение задачи— например, можно получить (6𝑘)2.

Предположим, что мы в какой-то момент получили число вида 6𝑛. Покажем, как полу-
чить 6(𝑛 + 1). Это можно сделать либо последовательностью

6𝑛 3−→ (6𝑛 + 3) 1−→ (6𝑛 + 4) 2−→ (6𝑛 + 6) ,

либо
6𝑛 2−→ (6𝑛 + 2) 1−→ (6𝑛 + 3) 3−→ (6𝑛 + 6)

в зависимости от того, использовалось ли 2 или 3 для получения 6𝑛. Таким образом, оста-
лось получить какое-то число, делящееся на 6. Рассмотрим случаи.

Если 𝑘 = 6𝑚 + 3, сделаем (6𝑚 + 3) 3−→ (6𝑚 + 6).

Если 𝑘 = 6𝑚 + 4, сделаем (6𝑚 + 4) 2−→ (6𝑚 + 6).

Если 𝑘 = 6𝑚 + 5, сделаем (6𝑚 + 5) 1−→ (6𝑚 + 6).
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Если 𝑘 = 6𝑚 + 2, сделаем (6𝑚 + 2) 1−→ (6𝑚 + 3) 3−→ (6𝑚 + 6).

Если 𝑘 = 6𝑚 + 1, то при𝑚 = 0 получаем точный квадрат 𝑘 = 1, а в ином случае сделаем

(6𝑚 + 1) 6𝑚+1−−−−→ (12𝑚 + 2) 1−→ (12𝑚 + 3) 3−→ (12𝑚 + 6) .

Третье решение. Пусть изначально на доске было записано число 𝑥. Пусть 𝑥 = 2𝑎1 +2𝑎2 +
… + 2𝑎𝑘 , где 𝑎1 > 𝑎2 > … > 𝑎𝑘 ⩾ 0. Докажем, что если у 𝑥 в двоичной записи во втором
разряде стоит 0 (то есть 𝑎2 < 𝑎1 − 1), то мы сможем получить число 𝑥2.

Для этого на первом этапе проделаем операции

𝑥 𝑥−→ 2𝑥 2𝑥−→ 4𝑥 4𝑥−−→ … 2𝑎1−1𝑥−−−−−→ 2𝑎1𝑥 .

На втором этапе проделаем операции

2𝑎1𝑥 2𝑎2𝑥−−−→ 2𝑎1𝑥 + 2𝑎2𝑥 2𝑎3𝑥−−−→ … 2𝑎𝑘𝑥−−−→ 2𝑎1𝑥 + 2𝑎2𝑥 +…+ 2𝑎𝑘𝑥 = 𝑥2 .

На первом этапе каждый раз прибавляется число вдвое больше, чем на предыдущем ша-
ге, поэтому там прибавляемые подряд числа различны. На втором этапе прибавляются
разные степенидвойки, умноженныена𝑥, поэтому тамприбавляемыеподрядчисла тоже
различны. На стыке этапов подряд прибавляются числа 2𝑎1−1𝑥 и 2𝑎2𝑥, и они тоже различ-
ны, поскольку 𝑎2 < 𝑎1 − 1.

Осталось разобраться со случаем, когда у 𝑥 во втором разряде в двоичной записи стоит 1
(то есть 𝑎2 = 𝑎1 − 1). Заметим, что нам достаточно получить из 𝑥 любое число с 0 во вто-
ромразряде иповторить далее предыдущий алгоритм (дваждыподряд одинаковые числа
прибавляться не будут, так как первый шаг описанного выше алгоритма— это удвоение
числа). Для этого получим число 12𝑥 как

𝑥 𝑥−→ 2𝑥 2𝑥−→ 4𝑥 𝑥−→ 5𝑥 5𝑥−→ 10𝑥 2𝑥−→ 12𝑥 .

Проверим, что у 12𝑥 во втором разряде в двоичной записи будет 0. Действительно, при
𝑥 = 2𝑎1 + 2𝑎1−1 + 𝑆, где 0 ⩽ 𝑆 < 2𝑎1−1, имеем

2𝑎1+4 = 12 ⋅ 2𝑎1 + 8 ⋅ 2𝑎1−1 < 12𝑥 = 12 ⋅ (3 ⋅ 2𝑎1−1 + 𝑆) = 36 ⋅ 2𝑎1−1 + 12 ⋅ 𝑆 <
< 36 ⋅ 2𝑎1−1 + 12 ⋅ 2𝑎1−1 = 2𝑎1+4 + 2𝑎1+3 ,

что и означает, что у числа 12𝑥 во втором разряде в двоичной записи стоит 0.

Четвёртое решение. Пусть Максим на каждом шаге будет увеличивать степень вхожде-
ния 2 в разложение числа на доске на простые множители. А именно, к числу 𝑥 = 2𝑘 ⋅ 𝑎,
где 𝑎—нечётное, Максим будет прибавлять его делитель 2𝑘. Тогда

𝑥 + 2𝑘 = 2𝑘(𝑎 + 1) = 2𝑘+𝑠 ⋅ 𝑎 + 1
2𝑠 ,

где число 𝑎+1
2𝑠 нечётно. Заметим, что 𝑠 ⩾ 1, поэтому 𝑎+1

2𝑠 < 𝑎, если 𝑎 > 1. Таким образом,
наибольшийнечётный делитель числа на доске будет всегда уменьшаться, пока не станет
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равным 1, то есть рано или поздно число на доске станет некоторой степенью двойки,
числом вида 2𝑛. Если 𝑛 чётно, тоМаксим добился требуемого. Еслиже 𝑛 нечётно,Максим
может прибавить к этому числу 2𝑛, после чего получится точный квадрат.

В ходе этого алгоритма каждый раз прибавляются разные числа, так как максимальная
степень 2, на которую делится число на доске, увеличивается.

Задача 2. На стороне 𝐵𝐶 треугольника𝐴𝐵𝐶 выбраны точки 𝑃 и𝑄 так, что 𝑃 лежит между
𝐵 и 𝑄. Лучи 𝐴𝑃 и 𝐴𝑄 делят угол 𝐵𝐴𝐶 на три равные части. Оказалось, что треугольник
𝐴𝑃𝑄 является остроугольным. Обозначим через 𝐵1, 𝑃1, 𝑄1, 𝐶1 проекции точек 𝐵, 𝑃, 𝑄, 𝐶
на прямые 𝐴𝑃, 𝐴𝑄, 𝐴𝑃, 𝐴𝑄 соответственно. Докажите, что прямые 𝐵1𝑃1 и 𝐶1𝑄1 пересека-
ются на прямой 𝐵𝐶.

𝐶
𝑄

𝑄1

𝐶1

𝐴

𝐵
𝑃

𝑃1

𝐵1

𝐻

Рис. 1: for the solution of problem 2

Решение. Проведём высоту 𝐴𝐻 в треугольнике 𝐴𝐵𝐶 (рис. 1). Точки 𝐴, 𝐵, 𝐵1, 𝐻 лежат на
окружности с диаметром 𝐴𝐵, а точки 𝐴, 𝑃, 𝑃1, 𝐻 лежат на окружности с диаметром 𝐴𝑃.
Следовательно,

∠𝐵𝐻𝐵1 = ∠𝐵𝐴𝐵1 = ∠𝑃𝐴𝑃1 = ∠𝑄𝐻𝑃1,
то есть прямые 𝐻𝐵1 и 𝐻𝑃1 совпадают, откуда точки 𝐵1, 𝐻, 𝑃1 лежат на одной прямой. Ана-
логично точки 𝐶1, 𝐻, 𝑃1 лежат на одной прямой.

Другое решение. Обозначим через 𝑋 и 𝑌 точки пересечения прямых 𝐵1𝑃1 и 𝐶1𝑄1 с прямой
𝐵𝐶 соответственно. По теореме Менелая

𝑃𝑋
𝑋𝑄 ⋅ 𝑄𝑃1𝑃1𝐴

⋅ 𝐴𝐵1𝐵1𝑃
= 1 и 𝑄𝑌

𝑌𝑃 ⋅ 𝑃𝑄1
𝑄1𝐴

⋅ 𝐴𝐶1𝐶1𝑄
= 1 .

Перемножив эти равенства, получим

𝑋𝑄
𝑃𝑋 ⋅ 𝑌𝑃𝑄𝑌 = 𝑄𝑃1

𝑃1𝐴
⋅ 𝐴𝐵1𝐵1𝑃

⋅ 𝑃𝑄1
𝑄1𝐴

⋅ 𝐴𝐶1𝐶1𝑄
= ( 𝑄𝑃1𝐶1𝑄

⋅ 𝐴𝐶1𝑃1𝐴
) ⋅ (𝑃𝑄1

𝐵1𝑃
⋅ 𝐴𝐵1𝑄1𝐴

) . (*)
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Заметим, что 𝑄𝑃1 ∶ 𝐶1𝑄 = 𝑄𝑃 ∶ 𝐶𝑄 = 𝐴𝑃 ∶ 𝐴𝐶 = 𝑃1𝐴 ∶ 𝐴𝐶1 и 𝑃𝑄1 ∶ 𝐵1𝑃 = 𝑃𝑄 ∶ 𝐵𝑃 =
= 𝐴𝑄 ∶ 𝐴𝐵 = 𝑄1𝐴 ∶ 𝐴𝐵1. Следовательно, правая часть равенства (*) равна 1. Таким обра-
зом, 𝑄𝑋 ∶ 𝑋𝑃 = 𝑄𝑌 ∶ 𝑌𝑃, то есть точки 𝑋 и 𝑌 совпадают.

Задача 3. Даны неотрицательные действительные числа 𝑎1, 𝑎2,… , 𝑎𝑛 (𝑛 ⩾ 2), сумма ко-
торых равна 𝑛

2 . Для каждого 𝑖 = 1,… , 𝑛 обозначим

𝑏𝑖 = 𝑎𝑖 + 𝑎𝑖𝑎𝑖+1 + 𝑎𝑖𝑎𝑖+1𝑎𝑖+2 +…+ 𝑎𝑖𝑎𝑖+1…𝑎𝑖+𝑛−2 + 2𝑎𝑖𝑎𝑖+1…𝑎𝑖+𝑛−1 ,

где 𝑎𝑗+𝑛 = 𝑎𝑗 для всех 𝑗. Докажите, что 𝑏𝑖 ⩾ 1 хотя бы для одного индекса 𝑖.

Первое решение. Все индексы в решении рассматриваются по модулю 𝑛.

Лемма. Найдётся индекс 𝑖 такой, что если обозначить 𝑥1 = 𝑎𝑖+1, 𝑥2 = 𝑎𝑖+2 и т. д., то

𝑥1 + 𝑥2 +…+ 𝑥𝑗 ⩾
𝑗
2 для каждого 𝑗 = 1, 2,… , 𝑛 . (♤)

Доказательство леммы. Выберем 𝑖 так, чтобы величина 𝑎1 + 𝑎2 + … + 𝑎𝑖 − 𝑖
2 была наи-

меньшей возможной (так как 𝑎1+𝑎2+…+𝑎𝑛 = 𝑛
2 , то такие величины будут одинаковыми

для 𝑖 и 𝑖 + 𝑛). Тогда для любого 𝑗 имеем

𝑎𝑖+1 + 𝑎𝑖+2 +…𝑎𝑖+𝑗 =
𝑗
2 + (𝑎1 + 𝑎2 +…+ 𝑎𝑖+𝑗 −

𝑖 + 𝑗
2 ) − (𝑎1 + 𝑎2 +…+ 𝑎𝑖 −

𝑖
2) ⩾

𝑗
2 .

Лемма доказана.

Обозначив 𝑥𝑗 в соответствии с леммой, докажем индукцией по 𝑘, что если (♤) выполнено
для 𝑗 ⩽ 𝑘, то

𝑥1 + 𝑥1𝑥2 +…+ 𝑥1𝑥2⋯𝑥𝑘−1 + 2𝑥1𝑥2⋯𝑥𝑘 ⩾ 1 . (♡)

При 𝑘 = 𝑛 это даст искомое 𝑏𝑖+1 ⩾ 1.

Для 𝑘 = 1 неравенство 2𝑥1 ⩾ 1 очевидно; предположим, что (♡) выполнено для 𝑘 − 1,
где 𝑘 > 1. Шаг индукции будет следовать из (♡), примененного к 𝑘 − 1 числу 𝑥1, …, 𝑥𝑘−2,
1
2𝑥𝑘−1 +𝑥𝑘−1𝑥𝑘, так что достаточно проверить, что эта последовательность удовлетворяет
условиям (♤).

Обозначим 𝑥1+⋯+𝑥𝑘−2 = 𝑘−1
2 −𝑠, где 𝑠 ⩽ 1

2 ; нам нужно доказать, что
1
2𝑥𝑘−1+𝑥𝑘−1𝑥𝑘 ⩾ 𝑠.

При 𝑠 ⩽ 0 или 𝑥𝑘−1 > 1 это очевидно, так что разберем случай 0 ⩽ 𝑠 ⩽ 1
2 и 0 ⩽ 𝑥𝑘−1 ⩽ 1.

Так как мы знаем 𝑥𝑘−1 ⩾ 𝑠 и 𝑥𝑘−1 + 𝑥𝑘 ⩾ 𝑠 + 1
2 из условий (♤) для 𝑗 = 𝑘 − 1 и 𝑘, то

1
2𝑥𝑘−1 + 𝑥𝑘−1𝑥𝑘 = 𝑥𝑘−1(𝑥𝑘−1 + 𝑥𝑘 − 1

2 ) + (1 − 𝑥𝑘−1)𝑥𝑘−1 ⩾ 𝑥𝑘−1𝑠 + (1 − 𝑥𝑘−1)𝑠 = 𝑠 ,

что и требовалось.

Второе решение. Предположим, что 𝑏𝑖 < 1 для всех 𝑖. Тогда и 𝑎𝑖 ⩽ 𝑏𝑖 < 1 для всех 𝑖.
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Обозначим 𝐴 = 𝑎1𝑎2…𝑎𝑛. Имеем

𝑏𝑖−1 = 𝑎𝑖−1 + 𝑎𝑖−1𝑏𝑖 + 𝐴 − 2𝐴𝑎𝑖−1
(все индексы рассматриваются по модулю 𝑛). Суммируя это для всех 𝑖 = 1, 2,… , 𝑛 и под-
ставляя∑𝑖 𝑎𝑖 =

𝑛
2 , получаем

∑
𝑖
𝑏𝑖 =

𝑛
2 +∑

𝑖
𝑏𝑖𝑎𝑖−1 + 𝑛𝐴 − 𝑛𝐴 ⇒

𝑛
2 = ∑

𝑖
𝑏𝑖(1 − 𝑎𝑖−1) < ∑

𝑖
(1 − 𝑎𝑖−1) =

𝑛
2 ,

противоречие.
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