
The 6th Olympiad of Metropolises
Mathematics
Solutions. Day 1

Problem 1. A positive integer is written on the board. EveryminuteMaxim adds to the number
on the board one of its positive divisors, writes the result on the board and erases the previous
number. However, it is forbidden for him to add the same number twice in a row. Prove that he
can proceed in such a way that eventually a perfect square will appear on the board.

First solution. Let the number 𝑘 be written on the board initially. We will assume that 𝑘 ≥ 2
(in the case of 𝑘 = 1, a perfect square is already written on the board). Maxim can perform the
following sequence of actions:

𝑘 𝑘−→ 2𝑘 2𝑘−→ 2 ⋅ 2𝑘 2−→ 2 ⋅ (2𝑘 + 1) 2𝑘+1−−−→ 3 ⋅ (2𝑘 + 1) 3−→

3 ⋅ (2𝑘 + 2) 2𝑘+2−−−→ 4 ⋅ (2𝑘 + 2) 4−→ 4 ⋅ (2𝑘 + 3) 2𝑘+3−−−→ …

… 𝑘2−1−−−→ (𝑘2 − 2𝑘 + 1)(𝑘2 − 1) 𝑘2−2𝑘+1−−−−−−→ (𝑘2 − 2𝑘 + 1) ⋅ 𝑘2 ,

where the added number is indicated above each arrow (it is obvious that any two numbers
added in a row are different). It remains to note that (𝑘2 − 2𝑘 + 1) ⋅ 𝑘2 = (𝑘(𝑘 − 1))2.

Second solution. Let the number 𝑘 be written on the board initially. We will prove that Maxim
can get any number divisible by 6 and greater than 2𝑘. The statement of the problem easily
follows from this, for example, he can obtain (6𝑘)2.

Suppose he got a number of the form 6𝑛 at some point. Let us show how he can obtain 6(𝑛+ 1).
This can be done either by sequence

6𝑛 3−→ (6𝑛 + 3) 1−→ (6𝑛 + 4) 2−→ (6𝑛 + 6) ,

or
6𝑛 2−→ (6𝑛 + 2) 1−→ (6𝑛 + 3) 3−→ (6𝑛 + 6) ,

depending on whether 2 or 3 was used to get 6𝑛. Thus, it remains to get some number divisible
by 6. Let us consider several cases.

If 𝑘 = 6𝑚 + 3, Maxim can perform (6𝑚 + 3) 3−→ (6𝑚 + 6).

If 𝑘 = 6𝑚 + 4, Maxim can perform (6𝑚 + 4) 2−→ (6𝑚 + 6).

If 𝑘 = 6𝑚 + 5, Maxim can perform (6𝑚 + 5) 1−→ (6𝑚 + 6).

If 𝑘 = 6𝑚 + 2, Maxim can perform (6𝑚 + 2) 1−→ (6𝑚 + 3) 3−→ (6𝑚 + 6).
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If 𝑘 = 6𝑚 + 1, then for𝑚 = 0 he already has a perfect square 𝑘 = 1, otherwise he can perform

(6𝑚 + 1) 6𝑚+1−−−−→ (12𝑚 + 2) 1−→ (12𝑚 + 3) 3−→ (12𝑚 + 6) .

Third solution. Suppose initially the number 𝑥 was written on the board. Let 𝑥 = 2𝑎1 + 2𝑎2 +
…+ 2𝑎𝑘 , where 𝑎1 > 𝑎2 > … > 𝑎𝑘 ≥ 0. Let us prove that if 𝑥 has 0 in the second position in its
binary notation (that is, 𝑎2 < 𝑎1 − 1), then we can get the number 𝑥2.

To do this, at the first stage, Maxim can perform the operations

𝑥 𝑥−→ 2𝑥 2𝑥−→ 4𝑥 4𝑥−−→ … 2𝑎1−1𝑥−−−−−→ 2𝑎1𝑥 .

At the second stage, he can perform the operations

2𝑎1𝑥 2𝑎2𝑥−−−→ 2𝑎1𝑥 + 2𝑎2𝑥 2𝑎3𝑥−−−→ … 2𝑎𝑘𝑥−−−→ 2𝑎1𝑥 + 2𝑎2𝑥 +…+ 2𝑎𝑘𝑥 = 𝑥2 .

At the first stage, each time the number added is twice the number of the previous step, so any
twonumbers added in a roware different. At the second stage, different powers of twomultiplied
by 𝑥 are added, so any two consecutive numbers are also different. At the junction of the stages,
the numbers 2𝑎1−1𝑥 and 2𝑎2𝑥 are added subsequently, and they are also different, since 𝑎2 <
𝑎1 − 1.

It remains to deal with the case when 𝑥 has 1 in the second position of its binary notation (that
is, 𝑎2 = 𝑎1 −1). Note that it is enough for Maxim to get from 𝑥 any number with 0 as the second
digit and then repeat the previous algorithm (the same numbers will not be added twice in a
row, since the first step of the above algorithm is doubling the number). To do this, Maxim will
obtain the number 12𝑥 with

𝑥 𝑥−→ 2𝑥 2𝑥−→ 4𝑥 𝑥−→ 5𝑥 5𝑥−→ 10𝑥 2𝑥−→ 12𝑥 .

Let us check that 12𝑥 in the second position in binary notation will have 0. Indeed, for 𝑥 =
2𝑎1 + 2𝑎1−1 + 𝑆, where 0 ≤ 𝑆 < 2𝑎1−1, we have

2𝑎1+4 = 12 ⋅ 2𝑎1 + 8 ⋅ 2𝑎1−1 < 12𝑥 = 12 ⋅ (3 ⋅ 2𝑎1−1 + 𝑆) = 36 ⋅ 2𝑎1−1 + 12 ⋅ 𝑆 <
< 36 ⋅ 2𝑎1−1 + 12 ⋅ 2𝑎1−1 = 2𝑎1+4 + 2𝑎1+3 ,

which means that the number 12𝑥 has 0 in the second position of its binary notation.

Fourth solution. Let Maxim at each step increase the largest power of 2 that the number on the
board is divisible by. Namely, to the number 𝑥 = 2𝑘 ⋅𝑎, where 𝑎 is odd, Maximwill add its divisor
2𝑘. Then

𝑥 + 2𝑘 = 2𝑘(𝑎 + 1) = 2𝑘+𝑠 ⋅ 𝑎 + 1
2𝑠 ,

where the number 𝑎+1
2𝑠 is odd. Note that 𝑠 ≥ 1, therefore 𝑎+1

2𝑠 < 𝑎 if 𝑎 > 1. Thus, the largest
odd divisor of the number on the board will always decrease until it becomes equal to 1, that is,
sooner or later the number on the board will become some power of two, a number of the form
2𝑛. If 𝑛 is even, then Maxim has achieved what he wants. If 𝑛 is odd, Maxim can add 2𝑛 to this
number, after which he will get a perfect square.
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In the course of this algorithm, different numbers are added each time, since the largest power
of 2 by which the number on the board is divisible increases.

Problem 2. Points 𝑃 and 𝑄 are chosen on the side 𝐵𝐶 of triangle 𝐴𝐵𝐶 so that 𝑃 lies between 𝐵
and 𝑄. The rays 𝐴𝑃 and 𝐴𝑄 divide the angle 𝐵𝐴𝐶 into three equal parts. It is known that the
triangle 𝐴𝑃𝑄 is acute-angled. Denote by 𝐵1, 𝑃1, 𝑄1, 𝐶1 the projections of points 𝐵, 𝑃, 𝑄, 𝐶 onto
the lines 𝐴𝑃, 𝐴𝑄, 𝐴𝑃, 𝐴𝑄, respectively. Prove that lines 𝐵1𝑃1 and 𝐶1𝑄1 meet on line 𝐵𝐶.

𝐶
𝑄

𝑄1

𝐶1

𝐴

𝐵
𝑃

𝑃1

𝐵1

𝐻

Figure 1: for the solution of problem 2

Solution. Let𝐴𝐻 be the altitude of the triangle𝐴𝐵𝐶 (fig. 1). The points𝐴, 𝐵, 𝐵1 and𝐻 lie on the
circle with diameter 𝐴𝐵 and the points 𝐴, 𝑃, 𝑃1 and 𝐻 lie on the circle with diameter 𝐴𝑃. Hence

∠𝐵𝐻𝐵1 = ∠𝐵𝐴𝐵1 = ∠𝑃𝐴𝑃1 = ∠𝑄𝐻𝑃1,

so the lines𝐻𝐵1 and𝐻𝑃1 coincide. Thus the line 𝐵1𝑃1 passes through𝐻. Similarly, the line 𝐶1𝑄1
passes through 𝐻.

Another solution. Let 𝑋 and 𝑌 be the intersection points of the line 𝐵𝐶 with the lines 𝐵1𝑃1 and
𝐶1𝑄1 respectively. By Menelaus’s theorem

𝑃𝑋
𝑋𝑄 ⋅ 𝑄𝑃1𝑃1𝐴

⋅ 𝐴𝐵1𝐵1𝑃
= 1 and 𝑄𝑌

𝑌𝑃 ⋅ 𝑃𝑄1
𝑄1𝐴

⋅ 𝐴𝐶1𝐶1𝑄
= 1 .

Multiplying these equalities, we obtain

𝑋𝑄
𝑃𝑋 ⋅ 𝑌𝑃𝑄𝑌 = 𝑄𝑃1

𝑃1𝐴
⋅ 𝐴𝐵1𝐵1𝑃

⋅ 𝑃𝑄1
𝑄1𝐴

⋅ 𝐴𝐶1𝐶1𝑄
= ( 𝑄𝑃1𝐶1𝑄

⋅ 𝐴𝐶1𝑃1𝐴
) ⋅ (𝑃𝑄1

𝐵1𝑃
⋅ 𝐴𝐵1𝑄1𝐴

) . (*)

Note that 𝑄𝑃1 ∶ 𝐶1𝑄 = 𝑄𝑃 ∶ 𝐶𝑄 = 𝐴𝑃 ∶ 𝐴𝐶 = 𝑃1𝐴 ∶ 𝐴𝐶1 and 𝑃𝑄1 ∶ 𝐵1𝑃 = 𝑃𝑄 ∶ 𝐵𝑃 =
𝐴𝑄 ∶ 𝐴𝐵 = 𝑄1𝐴 ∶ 𝐴𝐵1. Hence the right-hand side of (*) equals 1. So 𝑄𝑋 ∶ 𝑋𝑃 = 𝑄𝑌 ∶ 𝑌𝑃 and
the points 𝑋 and 𝑌 coincide.
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Problem 3. Let 𝑎1, 𝑎2,… , 𝑎𝑛 (𝑛 ≥ 2) be nonnegative real numbers whose sum is 𝑛
2 . For every

𝑖 = 1,… , 𝑛 define

𝑏𝑖 = 𝑎𝑖 + 𝑎𝑖𝑎𝑖+1 + 𝑎𝑖𝑎𝑖+1𝑎𝑖+2 +⋯+ 𝑎𝑖𝑎𝑖+1⋯𝑎𝑖+𝑛−2 + 2𝑎𝑖𝑎𝑖+1⋯𝑎𝑖+𝑛−1 ,

where 𝑎𝑗+𝑛 = 𝑎𝑗 for every 𝑗. Prove that 𝑏𝑖 ≥ 1 holds for at least one index 𝑖.

First solution. All indices in the solution are considered modulo 𝑛.

Lemma. There exists an index 𝑖 such that if we denote 𝑥1 = 𝑎𝑖+1, 𝑥2 = 𝑎𝑖+2, etc., then

𝑥1 + 𝑥2 +…+ 𝑥𝑗 ≥
𝑗
2 for every 𝑗 = 1, 2,… , 𝑛 . (♤)

Proof of the lemma. Let us choose 𝑖 so that the value of 𝑎1 + 𝑎2 + … + 𝑎𝑖 − 𝑖
2 is the smallest

possible (since 𝑎1 +𝑎2 +…+𝑎𝑛 = 𝑛
2 , such values will be the same for 𝑖 and 𝑖 + 𝑛). Then for any

𝑗 we have

𝑎𝑖+1 + 𝑎𝑖+2 +…𝑎𝑖+𝑗 =
𝑗
2 + (𝑎1 + 𝑎2 +…+ 𝑎𝑖+𝑗 −

𝑖 + 𝑗
2 ) − (𝑎1 + 𝑎2 +…+ 𝑎𝑖 −

𝑖
2) ≥

𝑗
2 .

Lemma is proven.

Denoting 𝑥𝑗 in accordance with the lemma, we prove by induction on 𝑘 that if (♤) holds for
𝑗 ≤ 𝑘, then

𝑥1 + 𝑥1𝑥2 +…+ 𝑥1𝑥2⋯𝑥𝑘−1 + 2𝑥1𝑥2⋯𝑥𝑘 ≥ 1 . (♡)

For 𝑘 = 𝑛 this will give the required 𝑏𝑖+1 ≥ 1.

For 𝑘 = 1, the inequality 2𝑥1 ≥ 1 is obvious; suppose that (♡) holds for 𝑘 − 1, where 𝑘 > 1. The
induction step will follow from (♡) applied to 𝑘 − 1 numbers 𝑥1, …, 𝑥𝑘−2, 12𝑥𝑘−1 + 𝑥𝑘−1𝑥𝑘, so it
suffices to check that this sequence satisfies conditions (♤).

We denote 𝑥1 +⋯ + 𝑥𝑘−2 = 𝑘−1
2 − 𝑠, where 𝑠 ≤ 1

2 ; we need to prove that
1
2𝑥𝑘−1 + 𝑥𝑘−1𝑥𝑘 ≥ 𝑠.

For 𝑠 ≤ 0 or 𝑥𝑘−1 > 1, this is obvious, so let us consider the case 0 ≤ 𝑠 ≤ 1
2 and 0 ≤ 𝑥𝑘−1 ≤ 1.

Since we know 𝑥𝑘−1 ≥ 𝑠 and 𝑥𝑘−1 + 𝑥𝑘 ≥ 𝑠 + 1
2 from conditions (♤) for 𝑗 = 𝑘 − 1 and 𝑘, then

1
2𝑥𝑘−1 + 𝑥𝑘−1𝑥𝑘 = 𝑥𝑘−1(𝑥𝑘−1 + 𝑥𝑘 − 1

2 ) + (1 − 𝑥𝑘−1)𝑥𝑘−1 ≥ 𝑥𝑘−1𝑠 + (1 − 𝑥𝑘−1)𝑠 = 𝑠 ,

as required.

Second solution. Assume that 𝑏𝑖 < 1 for all 𝑖. Then also 𝑎𝑖 ≤ 𝑏𝑖 < 1 for all 𝑖. Denote 𝐴 =
𝑎1𝑎2…𝑎𝑛. We have

𝑏𝑖−1 = 𝑎𝑖−1 + 𝑎𝑖−1𝑏𝑖 + 𝐴 − 2𝐴𝑎𝑖−1
(all indices are considered modulo 𝑛). Sum this up for 𝑖 = 1, 2,… , 𝑛 and substitute∑𝑖 𝑎𝑖 =

𝑛
2 to
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get

∑
𝑖
𝑏𝑖 =

𝑛
2 +∑

𝑖
𝑏𝑖𝑎𝑖−1 + 𝑛𝐴 − 𝑛𝐴 ⇒

𝑛
2 = ∑

𝑖
𝑏𝑖(1 − 𝑎𝑖−1) < ∑

𝑖
(1 − 𝑎𝑖−1) =

𝑛
2 ,

a contradiction.
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