The 6th Olympiad of Metropolises
Mathematics

Solutions. Day 1

Problem 1. A positive integer is written on the board. Every minute Maxim adds to the number
on the board one of its positive divisors, writes the result on the board and erases the previous
number. However, it is forbidden for him to add the same number twice in a row. Prove that he
can proceed in such a way that eventually a perfect square will appear on the board.

First solution. Let the number k be written on the board initially. We will assume that k > 2
(in the case of k = 1, a perfect square is already written on the board). Maxim can perform the
following sequence of actions:

k& ok 20 22 2k+ ) L 3 2k+ ) 2

3-2k+2) 22 4. 2k +2) S 42k +3) 2

k2-1 k?—2k+1
. — _

(kK2 =2k +1)(k*-1) (k> =2k+1)-k2,

where the added number is indicated above each arrow (it is obvious that any two numbers

added in a row are different). It remains to note that (k? — 2k + 1) - k* = (k(k — 1)) O

Second solution. Let the number k be written on the board initially. We will prove that Maxim
can get any number divisible by 6 and greater than 2k. The statement of the problem easily
follows from this, for example, he can obtain (6k)>.

Suppose he got a number of the form 6n at some point. Let us show how he can obtain 6(n + 1).
This can be done either by sequence

61> (6n+3) > (6n+4) > (6n+6),

or
6n > (6n+2) > (6n+3) > (6n+6),

depending on whether 2 or 3 was used to get 6n. Thus, it remains to get some number divisible
by 6. Let us consider several cases.

If k = 6m + 3, Maxim can perform (6m + 3) 2 (6m + 6).
If k = 6m + 4, Maxim can perform (6m + 4) 2 (6m + 6).
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If k = 6m + 5, Maxim can perform (6m + 5) — (6m + 6).

If k = 6m + 2, Maxim can perform (6m + 2) 5 (6m + 3) 2 (6m + 6).



If k = 6m + 1, then for m = 0 he already has a perfect square k = 1, otherwise he can perform
6m+1) T om+2) S (12m+3) > (12m+6). O

Third solution. Suppose initially the number x was written on the board. Let x = 2% + 2% +
... + 2% where a; > a, > ... > a; > 0. Let us prove that if x has 0 in the second position in its
binary notation (that is, @, < a; — 1), then we can get the number x2.

To do this, at the first stage, Maxim can perform the operations

x 2x 4x 201- 1y
X = 2Xx > 4x — ... —— 2%y,

At the second stage, he can perform the operations

a; a: a,
201y 22X gary 4 gaay 22X 2N gaiy 4 gtay 4 4 00ky = 42
At the first stage, each time the number added is twice the number of the previous step, so any
two numbers added in arow are different. At the second stage, different powers of two multiplied
by x are added, so any two consecutive numbers are also different. At the junction of the stages,
the numbers 2%1~1x and 2% x are added subsequently, and they are also different, since a, <
a, — 1.

It remains to deal with the case when x has 1 in the second position of its binary notation (that
is, a, = a; —1). Note that it is enough for Maxim to get from x any number with 0 as the second
digit and then repeat the previous algorithm (the same numbers will not be added twice in a
row, since the first step of the above algorithm is doubling the number). To do this, Maxim will
obtain the number 12x with

x£>2x2>4xi5xz>10xﬁ>12x.

Let us check that 12x in the second position in binary notation will have 0. Indeed, for x =
291 4 201-1 1 § where 0 < S < 29171, we have

20+4 = 12.20 4+ 8.2017 1 « 12x =12-(3-2971 +§)=36-29171 +12.S <
<36-20171 4122071 = pi+4 | part3

which means that the number 12x has 0 in the second position of its binary notation. O

Fourth solution. Let Maxim at each step increase the largest power of 2 that the number on the
board is divisible by. Namely, to the number x = 2k. a, where a is odd, Maxim will add its divisor

2%, Then

x+2k=2k(a+1)=2k+S-a2—tl,

where the number azlsl is odd. Note that s > 1, therefore az—ﬁl < aifa > 1. Thus, the largest
odd divisor of the number on the board will always decrease until it becomes equal to 1, that is,
sooner or later the number on the board will become some power of two, a number of the form
2", If n is even, then Maxim has achieved what he wants. If n is odd, Maxim can add 2" to this

number, after which he will get a perfect square.



In the course of this algorithm, different numbers are added each time, since the largest power
of 2 by which the number on the board is divisible increases. O

Problem 2. Points P and Q are chosen on the side BC of triangle ABC so that P lies between B
and Q. The rays AP and AQ divide the angle BAC into three equal parts. It is known that the
triangle APQ is acute-angled. Denote by By, B, Q;, C; the projections of points B, P, Q, C onto
the lines AP, AQ, AP, AQ, respectively. Prove that lines B; B, and C; Q; meet on line BC.

A

Figure 1: for the solution of problem 2

Solution. Let AH be the altitude of the triangle ABC (fig. 1). The points A, B, B; and H lie on the
circle with diameter AB and the points A, P, B and H lie on the circle with diameter AP. Hence

ZBHB, = £BAB, = £PAP, = 2QHB,

so the lines HB; and HB coincide. Thus the line B, B, passes through H. Similarly, the line C; Q,
passes through H. O

Another solution. Let X and Y be the intersection points of the line BC with the lines B, P, and
C;Qq respectively. By Menelaus’s theorem

QY PQ; AC, _
XQ BA BP YP QA CQ

XQ YP_On 4B PQAQ_(Q AQ) (PO AB)

PX QY RA BP QA CQ \GQ BA) \BP QA

Note that QB : C;Q = QP : CQ = AP : AC = BA : AC; and PQ; : BiP = PQ : BP =
AQ : AB = QA : AB,. Hence the right-hand side of (*) equals 1. So QX : XP = QY : YP and
the points X and Y coincide. O



Problem 3. Let a,a,,...,a, (n > 2) be nonnegative real numbers whose sum is % For every
i=1,..,ndefine

bi = a; + ;041 + Q011 Qiyy + -+ + QiQig1 - Qign—z + 2030141 Aign1 >

where a;,, = q; for every j. Prove that b; > 1 holds for at least one index i.

First solution. All indices in the solution are considered modulo #.

Lemma. There exists an index i such that if we denote x; = a;,1, X, = a;4,, etc., then
x1+x2+...+xj2% forevery j=1,2,...,n. (@)

Proof of the lemma. Let us choose i so that the value of a; + a, + ... + a; — % is the smallest

possible (since a; +a, + ... +a, = g, such values will be the same for i and i + n). Then for any
j we have

i+ i
ai+1+ai+2+...ai+j= +(a1+a2+"'+ai+j_Tj)_(al+a2+"'+ai_§)2

N ~.
N | ~.

Lemma is proven.

Denoting x; in accordance with the lemma, we prove by induction on k that if (¢) holds for
j <k, then
X1+ XXy + oo F XX Xy F2X1Xp o X 2= 1. )

For k = n this will give the required b;; > 1.
For k = 1, the inequality 2x, > 1 is obvious; suppose that () holds for k — 1, where k > 1. The

induction step will follow from (Q) applied to k — 1 numbers xy, ..., Xk_,, %xk_l + Xj_1Xg, SO it
suffices to check that this sequence satisfies conditions (¢).

% — 5, where s < %; we need to prove that %xk_l + Xp_1X = 5.

For s < 0 or x;_; > 1, this is obvious, so let us consider the case 0 < s < % and 0 < x,_; < 1.

We denote x; + -+ + Xp_ =

Since we know xj_; > sand x;_; + X, > s+ % from conditions (¢) for j = k — 1 and k, then

1 1
3Xk—1 F X1 Xk = X1 (X1 + Xk — 3) + (1= Xp_1)Xk—1 = Xg1S + (1 — Xp-1)s = 8,
as required. O

Second solution. Assume that b; < 1 for all i. Then also a@; < b; < 1 for all i. Denote A =
a;a, ... a,. We have
bii=a;i_1+a;_1bj+A—-2Aa;,

(all indices are considered modulo n). Sum this up fori = 1,2, ..., n and substitute Zi a; = % to



get
n
Zi:biz §+Zi:biai—1+”A—l’lA =

n

g = Zl: b(1—a;_;) < Zi:(l —a_)= 2

a contradiction.



