The 5th Olympiad of Metropolises
Mathematics

Solutions. Day 2

Problem 4. Positive numbers a, b and c satisfy a> = b? + bc and b?> = ¢? + ac. Prove that
-1y %. (Vladimir Bragin)

C a

Solution. We can rewrite the system in a following way

a’>=(b+c)b;
(b+c)b-c)=ac.

Multiplying the second equation by b, we obtain
a’>=(b+c)b;
b(b+c)(b—c) =bac.

Next we replace b(b + ¢) with a? in the second equation and get a(b — ¢) = abc.

Now we can divide both sides by a®bc and obtain % - % = é O
Another solution. By putting a = )l—c b= 2% c¢=21 the condition transforms to
y z
1_1. 1.
-y yz Y2z = X2z + x%y;
i_1_ 1. xz2 = xy? + y%z.
y2 o z2 xz’

Transferring all terms to the right side and taking the sum of the two equations, we get
0=(x*z+x%y —y*z) + (xy* + y*’z — xz*) =
0=x(xy+xz+y*—2z%) =
0=x(y+2z)(x+y—2).

In the last product the factors x and y + z are positive, so x + y — z = 0, and therefore

1 1 1
—_ - = = = -, D
a + b xX+y=z c

A one-line solution.

1. 1 1 2 2 2 2
(E+E—E>-abc(b+c)=a(c + ac—b*) +c(b* + bc—a*) =0. O



Note. Observe that b+ ¢ > a > b > c. If one constructs a triangle ABC with sides a = BC,
b = CA, ¢ = AB, the equations given in the problem statement will be equivalent to £A = 2«B
and B = 2£C, respectively. It follows thata : b : ¢ = sin(47”) : sin(27”) : sin(%), which
provides another way to obtain the desired identity.

Problem 5. There is an empty table with 2!%° rows and 100 columns. Alice and Eva take turns
filling the empty cells of the first row of the table, Alice plays first. In each move, Alice chooses
an empty cell and puts a cross in it; Eva in each move chooses an empty cell and puts a zero.
When no empty cells remain in the first row, the players move on to the second row, and so on
(in each new row Alice plays first).

The game ends when all the rows are filled. Alice wants to make as many different rows in the
table as possible, while Eva wants to make as few as possible. How many different rows will be
there in the table if both follow their best strategies? (Denis Afrizonov)

Answer: 2°0.

Solution. First, we prove that Eva can achieve there to be no more than 2°° different rows. Eva
can divide every row into 50 “domino” rectangles 1 X 2. When Alice puts a cross in one cell of a
domino, Eva puts a zero in another cell of the same domino. Upon the completion of each row
every domino will be one of two types (cross-zero or zero-cross), so there will be no more than
2°0 different rows.

Next, let us prove that Alice can achieve at least 2°° different rows. It is sufficient to show that
as long as there are less than 2°° already filled rows, Alice can make the next row different from
all the previous ones.

Consider the next (“new”) row that the players fill out. Let’s call toxic those rows among the
previously filled ones that match the new row by the symbols that are already filled in it. (Thus,
before Alice’s first move in the new row, all the previously filled rows will be toxic.) Let us prove
that with each of her moves, Alice can reduce the number of toxic rows by half. If initially this
number was less than 20, then at the end it will be less than 1, that is, the new row will not
match any of the previous ones.

Suppose that Alice and Eve have each made i moves in the new row. Let us denote the current
number of toxic rows by T. Each of them matches a new row by i crosses; hence, 50 —i crosses in
a toxic row are located above empty cells of the new row. Then there are exactly (50—i)T crosses
in toxic rows over these empty cells. There are 100 — 2i empty cells; by the pigeonhole principle,
there is an empty cell over which there are at most %T crosses. This is the cell in which Alice
should put a cross with her (i + 1)-th move. O

Problem 6. Consider a convex pentagon ABCDE. Let Ay, By, Cy, Dy, E; be the intersection
points of the pairs of diagonals BD and CE, CE and DA, DA and EB, EB and AC, AC and BD,
respectively. Prove that if four of the five quadrilaterals AB,A;B, BC,B,C, CD,C,D, DE,D;E,
EA,E A are cyclic, then the fifth one is also cyclic. (Nairi Sedrakyan, Yuliy Tikhonov)



Solution 1. Suppose that the quadrangles AB;A,B, BC,B,C, CD,C,D, DE;D;E are cyclic. Then
£ABD = £AB,E = £EBC, therefore, ZABE = «CBD. Similarly, we get that ZBCA = «DCE
and £CDB = ZEDA.

Figure 1: for the solution 1 of problem 6
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Figure 2: for the solution 1 of problem 6

Denote the lengths of the sides of the pentagon by a, b, c, d, e as shown in fig. 1. We multiply the
side lengths of the triangles AED, BCD, BAE by b, e, c respectively; from the obtained triangles
we can compose the shape shown in fig. 2a. We have ZNMP = ZEDA = 2CDB = «PKN,
therefore, the points M, N, P, K are concyclic. Similarly, we get that the points N, P, K, Q are
concyclic. Hence, all five points M, N, P, K, Q are concyclic.

Now we multiply the lengths of the sides of the triangles ABC and ECD by d and a, respectively;



from the obtained triangles we can compose the figure shown in fig. 2b. It is clear that the points
K;, Qy, M;, N are also concyclic.

It is enough to prove the equality of the arcs MN and M N, since in such case we have ZBAC =
£4M;Q;N; = £MPN = #DAE, whence ZEAC = #BAD = «BA,C, that is, the quadrilateral
AE, A, E is cyclic.

Note that zZBAD+ 2DEB = #BA,C+ «DE,C = n—£ACE = 2CAE+ £AEC, therefore ZBAC +
£CED = £DAE + £BEA < m. We have ZzMPN + 2QPK = £DAE + £BEA = #/BAC + £CED =
2M,;Q; N, + 2K M, Q,. We get that MN = M;N;, QK = Q,K; and MN+QK = M;N,+Q,K; < 2.

Let us forget about the rest of the construction, except for the four arcs indicated in the last
equality. We can move the arc QK along the circle so that its midpoint becomes diametrically
opposite to the midpoint of the arc MN, and move Q;K; similarly. Then MN || QK and M N; ||
Q; K7, and isosceles trapezoids MNKQ and M;N; K, Q; are congruent, since they have the same
lengths of the bases and the same angle between diagonals (the angle can be expressed as the
half-sum of the arcs). Hence it follows that in the original construction MN = M;N; aswell. [

Remark. 1t is not hard to prove that the constructions in fig. 2 can in fact be perfectly aligned,
coinciding at the corresponding points. For example, it is enough to notice that ZMPQ =
£4BCD — 2DAE — £AEB = £BCD — £ZBC1A = £BCA = £ZM N, Q.

Solution 2. Asin the previous solution, suppose that the quadrilaterals AB;A, B, BC; B, C, CD,C, D,
DE;D;E are cyclic and note the same three pairs of equal angles. Let us denote these angles by
B, v, 8 (at the vertices B, C, D, respectively); in addition, we denote « = #BAC, a; = £EAD,
€ = «DEC, e, = «BEA (fig. 3). Itis enough to prove that « = a,; and € = €;, because the cyclicity
of the quadrilateral AE; A, E will follow from £EAC = #BAD = #BA,C.

Figure 3: for the solution 2 of problem 6



For this, in turn, it is sufficient to establish that

sina _ sing;

ate=a;+e<m U i = - .
sine Sin &

Indeed, considering triangles with pairs of angles a, € and «ay, €, it is easy to see that under this
condition, their third angles are equal, as are the ratios of the sides adjacent to them, and the
required equality of angles follows from the similarity of triangles.

As noted in the previous solution, @ + ¢ = a; + ¢; < 7 follows from «BAD + 2DEB = ZBA,C +
«DE,C = — £ACE = £CAE + £AEC.

As for the ratios of the sines, we can multiply five theorems of sines:

1_EA AB BC CD DE sinf siny sind sine sina; sina; sine
T AB BC CD DE EA ~ sing sina sin@ siny sind = sing sina’

Solution 3. Let us introduce complex coordinates on the plane (in an arbitrary way) and identify
vectors with complex numbers.

We will use the fact that the quadrilateral AE; A E is cyclic if and only if

AE, - AE
—L L eR.

EA, -EA
Moreover, the vectors in this condition can be replaced by collinear vectors; this will not change
the realness of the expression.

Denote z; = A_C; Zy = ﬁ z3 = @ Z4 = D7 Zs = EB. Then the above condition can be
rewritten as

Zy 23

nm o (Lil)er =
2,(z1 + 23)

Z1 23
(w; + ws) - w; €R,
where w; = z;!. For each of the rest of the five quadrilaterals its cyclicity will be equivalent to

a similar condition, with a cyclic shift of indices. (For the rest of the proof we consider indices
modulo 5.)

But the sum of all five expressions appearing in these conditions is always a real number:
5 5
D (W + Wiy2) - Wiegr = D, (Wi + Wieyy + Wiyy - W) ER,

k=1 k=1

which follows from u - v + u - v € R. This means that if four summands are real, then the fifth
is also real. O



Figure 4: for the solution 4 of problem 6

Solution 4.' As in the first two solutions, suppose that the quadrilaterals AB;A,B, BC;B,C,
CD,C,D, DE;D;E are cyclic and note the same three pairs of equal angles. In particular, de-
note y = 2BCA = 2ECD; choose the sign of signed angles so that Z(EC,DC) = +y.

Denote by C, the intersection point of the lines BA and DE (fig. 4). Observe that
2(DE, BA) = £(DA, BA) + £(DE,DA) = £(EC,DB) + £(DB,DC) = £(EC,DC) =y #0,

which means that those lines indeed intersect. Moreover, those are the rays BA and DE that
intersect (and not AB and ED), since otherwise ZAC,bE = m —y > ZACE would lead to a
contradiction.

By isogonal line lemma we get that CC; and CC, are isogonals with respect to angle BCD. Denote
by S the intersection point of the lines CC, and BD. Observe that points C; and S lie on isogonals
with respect to each of the angles ABC, BCD, CDE. It follows that C; and S are isogonal conjugate
points with respect to the quadrilateral CBC,D (one can prove this by considering the reflections
of C; about the sides of the quadrilateral, and showing that they lie on a circle with center S).

But then we have 2CSB + «DSC, = m (a known property of points that have an isogonal conju-
gate with respect to a quadrilateral), which in this case means CC, 1 BD.

All that remains is to calculate some angles:

ZAAE = £ABB, = LABE + £EBB, = £DBC + £C,CB, = £DBC + £E CC, = 5 -y,

ZAE\E = £D\DE = ZADE + £D,DA = £CDB + £D,CCy = £CDB + £C,CA, =5 —y. O

based on the solutions found (independently) by participants Boris Stankovi¢ and Mijail Guttierrez after the contest.



