
The 5th Olympiad of Metropolises
Mathematics
Solutions. Day 2

Problem 4. Positive numbers 𝑎, 𝑏 and 𝑐 satisfy 𝑎2 = 𝑏2 + 𝑏𝑐 and 𝑏2 = 𝑐2 + 𝑎𝑐. Prove that
1
𝑐 =

1
𝑎 +

1
𝑏 . (Vladimir Bragin)

Solution. We can rewrite the system in a following way

{
𝑎2 = (𝑏 + 𝑐)𝑏 ;
(𝑏 + 𝑐)(𝑏 − 𝑐) = 𝑎𝑐 .

Multiplying the second equation by 𝑏, we obtain

{
𝑎2 = (𝑏 + 𝑐)𝑏 ;
𝑏(𝑏 + 𝑐)(𝑏 − 𝑐) = 𝑏𝑎𝑐 .

Next we replace 𝑏(𝑏 + 𝑐) with 𝑎2 in the second equation and get 𝑎2(𝑏 − 𝑐) = 𝑎𝑏𝑐.

Now we can divide both sides by 𝑎2𝑏𝑐 and obtain 1
𝑐 −

1
𝑏 =

1
𝑎 .

Another solution. By putting 𝑎 = 1
𝑥 , 𝑏 =

1
𝑦 , 𝑐 =

1
𝑧 , the condition transforms to

⎧
⎨
⎩

1
𝑥2 =

1
𝑦2 +

1
𝑦𝑧 ;

1
𝑦2 =

1
𝑧2 +

1
𝑥𝑧 ;

⇒ {
𝑦2𝑧 = 𝑥2𝑧 + 𝑥2𝑦 ;
𝑥𝑧2 = 𝑥𝑦2 + 𝑦2𝑧 .

Transferring all terms to the right side and taking the sum of the two equations, we get

0 = (𝑥2𝑧 + 𝑥2𝑦 − 𝑦2𝑧) + (𝑥𝑦2 + 𝑦2𝑧 − 𝑥𝑧2) ⇒
0 = 𝑥(𝑥𝑦 + 𝑥𝑧 + 𝑦2 − 𝑧2) ⇒
0 = 𝑥(𝑦 + 𝑧)(𝑥 + 𝑦 − 𝑧) .

In the last product the factors 𝑥 and 𝑦 + 𝑧 are positive, so 𝑥 + 𝑦 − 𝑧 = 0, and therefore

1
𝑎 + 1

𝑏 = 𝑥 + 𝑦 = 𝑧 = 1
𝑐 .

A one-line solution.

( 1𝑎 + 1
𝑏 −

1
𝑐 ) ⋅ 𝑎𝑏𝑐(𝑏 + 𝑐) = 𝑎(𝑐2 + 𝑎𝑐 − 𝑏2) + 𝑐(𝑏2 + 𝑏𝑐 − 𝑎2) = 0 .
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Note. Observe that 𝑏 + 𝑐 > 𝑎 > 𝑏 > 𝑐. If one constructs a triangle 𝐴𝐵𝐶 with sides 𝑎 = 𝐵𝐶,
𝑏 = 𝐶𝐴, 𝑐 = 𝐴𝐵, the equations given in the problem statement will be equivalent to ∠𝐴 = 2∠𝐵
and ∠𝐵 = 2∠𝐶, respectively. It follows that 𝑎 ∶ 𝑏 ∶ 𝑐 = sin( 4𝜋7 ) ∶ sin( 2𝜋7 ) ∶ sin(𝜋7 ), which
provides another way to obtain the desired identity.

Problem 5. There is an empty table with 2100 rows and 100 columns. Alice and Eva take turns
filling the empty cells of the first row of the table, Alice plays first. In each move, Alice chooses
an empty cell and puts a cross in it; Eva in each move chooses an empty cell and puts a zero.
When no empty cells remain in the first row, the players move on to the second row, and so on
(in each new row Alice plays first).

The game ends when all the rows are filled. Alice wants to make as many different rows in the
table as possible, while Eva wants to make as few as possible. How many different rows will be
there in the table if both follow their best strategies? (Denis Afrizonov)

Answer: 250.

Solution. First, we prove that Eva can achieve there to be no more than 250 different rows. Eva
can divide every row into 50 “domino” rectangles 1 × 2. When Alice puts a cross in one cell of a
domino, Eva puts a zero in another cell of the same domino. Upon the completion of each row
every domino will be one of two types (cross-zero or zero-cross), so there will be no more than
250 different rows.

Next, let us prove that Alice can achieve at least 250 different rows. It is sufficient to show that
as long as there are less than 250 already filled rows, Alice can make the next row different from
all the previous ones.

Consider the next (“new”) row that the players fill out. Let’s call toxic those rows among the
previously filled ones that match the new row by the symbols that are already filled in it. (Thus,
before Alice’s first move in the new row, all the previously filled rows will be toxic.) Let us prove
that with each of her moves, Alice can reduce the number of toxic rows by half. If initially this
number was less than 250, then at the end it will be less than 1, that is, the new row will not
match any of the previous ones.

Suppose that Alice and Eve have each made 𝑖 moves in the new row. Let us denote the current
number of toxic rows by 𝑇. Each of themmatches a new row by 𝑖 crosses; hence, 50−𝑖 crosses in
a toxic row are located above empty cells of the new row. Then there are exactly (50−𝑖)𝑇 crosses
in toxic rows over these empty cells. There are 100−2𝑖 empty cells; by the pigeonhole principle,
there is an empty cell over which there are at most 1

2𝑇 crosses. This is the cell in which Alice
should put a cross with her (𝑖 + 1)-th move.

Problem 6. Consider a convex pentagon 𝐴𝐵𝐶𝐷𝐸. Let 𝐴1, 𝐵1, 𝐶1, 𝐷1, 𝐸1 be the intersection
points of the pairs of diagonals 𝐵𝐷 and 𝐶𝐸, 𝐶𝐸 and 𝐷𝐴, 𝐷𝐴 and 𝐸𝐵, 𝐸𝐵 and 𝐴𝐶, 𝐴𝐶 and 𝐵𝐷,
respectively. Prove that if four of the five quadrilaterals 𝐴𝐵1𝐴1𝐵, 𝐵𝐶1𝐵1𝐶, 𝐶𝐷1𝐶1𝐷, 𝐷𝐸1𝐷1𝐸,
𝐸𝐴1𝐸1𝐴 are cyclic, then the fifth one is also cyclic. (Nairi Sedrakyan, Yuliy Tikhonov)
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Solution 1. Suppose that the quadrangles 𝐴𝐵1𝐴1𝐵, 𝐵𝐶1𝐵1𝐶, 𝐶𝐷1𝐶1𝐷, 𝐷𝐸1𝐷1𝐸 are cyclic. Then
∠𝐴𝐵𝐷 = ∠𝐴𝐵1𝐸 = ∠𝐸𝐵𝐶, therefore, ∠𝐴𝐵𝐸 = ∠𝐶𝐵𝐷. Similarly, we get that ∠𝐵𝐶𝐴 = ∠𝐷𝐶𝐸
and ∠𝐶𝐷𝐵 = ∠𝐸𝐷𝐴.

𝐴

𝐵

𝐶

𝐷

𝐸

𝑎

𝑏 𝑐

𝑑

𝑒

𝐴1

𝐵1

𝐶1

𝐷1

𝐸1

Figure 1: for the solution 1 of problem 6
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Figure 2: for the solution 1 of problem 6

Denote the lengths of the sides of the pentagon by 𝑎, 𝑏, 𝑐, 𝑑, 𝑒 as shown in fig. 1. Wemultiply the
side lengths of the triangles 𝐴𝐸𝐷, 𝐵𝐶𝐷, 𝐵𝐴𝐸 by 𝑏, 𝑒, 𝑐 respectively; from the obtained triangles
we can compose the shape shown in fig. 2a. We have ∠𝑁𝑀𝑃 = ∠𝐸𝐷𝐴 = ∠𝐶𝐷𝐵 = ∠𝑃𝐾𝑁,
therefore, the points 𝑀, 𝑁, 𝑃, 𝐾 are concyclic. Similarly, we get that the points 𝑁, 𝑃, 𝐾, 𝑄 are
concyclic. Hence, all five points𝑀, 𝑁, 𝑃, 𝐾, 𝑄 are concyclic.

Nowwemultiply the lengths of the sides of the triangles 𝐴𝐵𝐶 and 𝐸𝐶𝐷 by 𝑑 and 𝑎, respectively;

3



from the obtained triangles we can compose the figure shown in fig. 2b. It is clear that the points
𝐾1, 𝑄1,𝑀1, 𝑁1 are also concyclic.

It is enough to prove the equality of the arcs𝑀𝑁 and𝑀1𝑁1, since in such case we have ∠𝐵𝐴𝐶 =
∠𝑀1𝑄1𝑁1 = ∠𝑀𝑃𝑁 = ∠𝐷𝐴𝐸, whence ∠𝐸𝐴𝐶 = ∠𝐵𝐴𝐷 = ∠𝐵𝐴1𝐶, that is, the quadrilateral
𝐴𝐸1𝐴1𝐸 is cyclic.

Note that∠𝐵𝐴𝐷+∠𝐷𝐸𝐵 = ∠𝐵𝐴1𝐶+∠𝐷𝐸1𝐶 = π−∠𝐴𝐶𝐸 = ∠𝐶𝐴𝐸+∠𝐴𝐸𝐶, therefore∠𝐵𝐴𝐶+
∠𝐶𝐸𝐷 = ∠𝐷𝐴𝐸+∠𝐵𝐸𝐴 < π. We have ∠𝑀𝑃𝑁 +∠𝑄𝑃𝐾 = ∠𝐷𝐴𝐸+∠𝐵𝐸𝐴 = ∠𝐵𝐴𝐶 +∠𝐶𝐸𝐷 =
∠𝑀1𝑄1𝑁1+∠𝐾1𝑀1𝑄1. We get that𝑀𝑁 = 𝑀1𝑁1,𝑄𝐾 = 𝑄1𝐾1 and Ŋ𝑀𝑁+Ň𝑄𝐾 = Ő𝑀1𝑁1+Ő𝑄1𝐾1 < 2π.

Let us forget about the rest of the construction, except for the four arcs indicated in the last
equality. We can move the arc 𝑄𝐾 along the circle so that its midpoint becomes diametrically
opposite to the midpoint of the arc𝑀𝑁, and move 𝑄1𝐾1 similarly. Then𝑀𝑁 ∥ 𝑄𝐾 and𝑀1𝑁1 ∥
𝑄1𝐾1, and isosceles trapezoids𝑀𝑁𝐾𝑄 and𝑀1𝑁1𝐾1𝑄1 are congruent, since they have the same
lengths of the bases and the same angle between diagonals (the angle can be expressed as the
half-sum of the arcs). Hence it follows that in the original construction Ŋ𝑀𝑁 = Ő𝑀1𝑁1 as well.

Remark. It is not hard to prove that the constructions in fig. 2 can in fact be perfectly aligned,
coinciding at the corresponding points. For example, it is enough to notice that ∠𝑀𝑃𝑄 =
∠𝐵𝐶𝐷 − ∠𝐷𝐴𝐸 − ∠𝐴𝐸𝐵 = ∠𝐵𝐶𝐷 − ∠𝐵𝐶1𝐴 = ∠𝐵𝐶𝐴 = ∠𝑀1𝑁1𝑄1.

Solution 2. As in the previous solution, suppose that the quadrilaterals𝐴𝐵1𝐴1𝐵,𝐵𝐶1𝐵1𝐶,𝐶𝐷1𝐶1𝐷,
𝐷𝐸1𝐷1𝐸 are cyclic and note the same three pairs of equal angles. Let us denote these angles by
𝛽, 𝛾, 𝛿 (at the vertices 𝐵, 𝐶, 𝐷, respectively); in addition, we denote 𝛼 = ∠𝐵𝐴𝐶, 𝛼1 = ∠𝐸𝐴𝐷,
𝜀 = ∠𝐷𝐸𝐶, 𝜀1 = ∠𝐵𝐸𝐴 (fig. 3). It is enough to prove that 𝛼 = 𝛼1 and 𝜀 = 𝜀1, because the cyclicity
of the quadrilateral 𝐴𝐸1𝐴1𝐸 will follow from ∠𝐸𝐴𝐶 = ∠𝐵𝐴𝐷 = ∠𝐵𝐴1𝐶.
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Figure 3: for the solution 2 of problem 6
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For this, in turn, it is sufficient to establish that

𝛼 + 𝜀 = 𝛼1 + 𝜀1 < π и sin𝛼
sin 𝜀 =

sin𝛼1
sin 𝜀1

.

Indeed, considering triangles with pairs of angles 𝛼, 𝜀 and 𝛼1, 𝜀1, it is easy to see that under this
condition, their third angles are equal, as are the ratios of the sides adjacent to them, and the
required equality of angles follows from the similarity of triangles.

As noted in the previous solution, 𝛼+ 𝜀 = 𝛼1 + 𝜀1 < π follows from ∠𝐵𝐴𝐷+∠𝐷𝐸𝐵 = ∠𝐵𝐴1𝐶 +
∠𝐷𝐸1𝐶 = π − ∠𝐴𝐶𝐸 = ∠𝐶𝐴𝐸 + ∠𝐴𝐸𝐶.

As for the ratios of the sines, we can multiply five theorems of sines:

1 = 𝐸𝐴
𝐴𝐵 ⋅ 𝐴𝐵𝐵𝐶 ⋅ 𝐵𝐶𝐶𝐷 ⋅ 𝐶𝐷𝐷𝐸 ⋅ 𝐷𝐸𝐸𝐴 = sin 𝛽

sin 𝜀1
⋅ sin 𝛾sin𝛼 ⋅ sin 𝛿sin 𝛽 ⋅ sin 𝜀sin 𝛾 ⋅

sin𝛼1
sin 𝛿 = sin𝛼1

sin 𝜀1
⋅ sin 𝜀sin𝛼 .

Solution 3. Let us introduce complex coordinates on the plane (in an arbitrary way) and identify
vectors with complex numbers.

We will use the fact that the quadrilateral 𝐴𝐸1𝐴1𝐸 is cyclic if and only if

𝐴𝐸1 ⋅ 𝐴1𝐸
𝐸1𝐴1 ⋅ 𝐸𝐴

∈ ℝ .

Moreover, the vectors in this condition can be replaced by collinear vectors; this will not change
the realness of the expression.

Denote 𝑧1 = 𝐴𝐶, 𝑧2 = 𝐵𝐷, 𝑧3 = 𝐶𝐸, 𝑧4 = 𝐷𝐴, 𝑧5 = 𝐸𝐵. Then the above condition can be
rewritten as

𝑧1 ⋅ 𝑧3
𝑧2(𝑧1 + 𝑧3)

∈ ℝ ⇔ ( 1𝑧1
+ 1
𝑧3
) 𝑧2 ∈ ℝ ⇔

(𝑤1 + 𝑤3) ⋅ 𝑤2 ∈ ℝ ,

where 𝑤𝑖 = 𝑧−1𝑖 . For each of the rest of the five quadrilaterals its cyclicity will be equivalent to
a similar condition, with a cyclic shift of indices. (For the rest of the proof we consider indices
modulo 5.)

But the sum of all five expressions appearing in these conditions is always a real number:

5
∑
𝑘=1

(𝑤𝑘 + 𝑤𝑘+2) ⋅ 𝑤𝑘+1 =
5
∑
𝑘=1

(𝑤𝑘 ⋅ 𝑤𝑘+1 + 𝑤𝑘+1 ⋅ 𝑤𝑘) ∈ ℝ ,

which follows from 𝑢 ⋅ 𝑣 + 𝑢 ⋅ 𝑣 ∈ ℝ. This means that if four summands are real, then the fifth
is also real.
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Figure 4: for the solution 4 of problem 6

Solution 4.1 As in the first two solutions, suppose that the quadrilaterals 𝐴𝐵1𝐴1𝐵, 𝐵𝐶1𝐵1𝐶,
𝐶𝐷1𝐶1𝐷, 𝐷𝐸1𝐷1𝐸 are cyclic and note the same three pairs of equal angles. In particular, de-
note 𝛾 = ∠𝐵𝐶𝐴 = ∠𝐸𝐶𝐷; choose the sign of signed angles so that ∠(𝐸𝐶,𝐷𝐶) = +𝛾.

Denote by 𝐶2 the intersection point of the lines 𝐵𝐴 and 𝐷𝐸 (fig. 4). Observe that

∠(𝐷𝐸, 𝐵𝐴) = ∠(𝐷𝐴, 𝐵𝐴) + ∠(𝐷𝐸,𝐷𝐴) = ∠(𝐸𝐶,𝐷𝐵) + ∠(𝐷𝐵,𝐷𝐶) = ∠(𝐸𝐶,𝐷𝐶) = 𝛾 ≠ 0 ,

which means that those lines indeed intersect. Moreover, those are the rays 𝐵𝐴 and 𝐷𝐸 that
intersect (and not 𝐴𝐵 and 𝐸𝐷), since otherwise ∠𝐴𝐶2𝐸 = π − 𝛾 > ∠𝐴𝐶𝐸 would lead to a
contradiction.

By isogonal line lemmawe get that𝐶𝐶1 and𝐶𝐶2 are isogonalswith respect to angle𝐵𝐶𝐷. Denote
by 𝑆 the intersection point of the lines𝐶𝐶2 and 𝐵𝐷. Observe that points𝐶1 and 𝑆 lie on isogonals
with respect to each of the angles𝐴𝐵𝐶,𝐵𝐶𝐷,𝐶𝐷𝐸. It follows that𝐶1 and𝑆 are isogonal conjugate
points with respect to the quadrilateral𝐶𝐵𝐶2𝐷 (one can prove this by considering the reflections
of 𝐶1 about the sides of the quadrilateral, and showing that they lie on a circle with center 𝑆).

But then we have ∠𝐶𝑆𝐵 +∠𝐷𝑆𝐶2 = π (a known property of points that have an isogonal conju-
gate with respect to a quadrilateral), which in this case means 𝐶𝐶2 ⟂ 𝐵𝐷.

All that remains is to calculate some angles:

∠𝐴𝐴1𝐸 = ∠𝐴𝐵𝐵1 = ∠𝐴𝐵𝐸 + ∠𝐸𝐵𝐵1 = ∠𝐷𝐵𝐶 + ∠𝐶1𝐶𝐵1 = ∠𝐷𝐵𝐶 + ∠𝐸1𝐶𝐶2 = π
2 − 𝛾 ,

∠𝐴𝐸1𝐸 = ∠𝐷1𝐷𝐸 = ∠𝐴𝐷𝐸 + ∠𝐷1𝐷𝐴 = ∠𝐶𝐷𝐵 + ∠𝐷1𝐶𝐶1 = ∠𝐶𝐷𝐵 + ∠𝐶2𝐶𝐴1 = π
2 − 𝛾 .

1based on the solutions found (independently) by participants Boris Stanković andMijail Guttierrez after the contest.
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