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Решения

День 2

Задача 4. На экзамен пришли 100 студентов. Преподаватель по очереди зада-
ёт каждому студенту один вопрос: «Сколько из 100 студентов получат оценку
«сдал» к концу экзамена?». В ответ студент называет целое число. Сразу по-
сле получения ответа преподаватель объявляет всем, какую оценку получил
студент: «сдал» или «не сдал».

После того, как все студенты получат оценку, придет инспектор и проверит, есть
ли студенты, которые дали правильный ответ, но получили оценку «не сдал».
Если хотя бы один такой студент найдётся, то преподаватель будет отстранен
от работы, а оценки всех студентов заменят на «сдал». В противном случае
никаких изменений не произойдёт.

Могут ли студенты придумать стратегию, которая гарантирует им всем оценку
«сдал»? (Denis Afrizonov)

Решение. Опишем, как договориться студентам, чтобы всем сдать экзамен. Рас-
смотрим конкретного студента Василия. Пусть Василий представит, что препо-
даватель поставит ему оценку «не сдал», а всем, кто отвечает после него —
оценку «сдал». Тогда в качестве ответа Василий назовёт суммарное количество
оценок «сдал», полученных студентами в этом случае. Иначе говоря, если k
студентов получили оценку «не сдал», то Василий назовёт число 99− k.

Докажем, что придерживаясь такой стратегии, все студенты сдадут экзамен.
Если все студенты получили оценку «сдал», то они добились своей цели. Иначе
рассмотрим последнего студента Петра, который получил оценку «не сдал».
Поскольку после Петра все получили оценку «сдал», то Пётр ответил на вопрос
правильно. Таким образом, инспектор заменит все оценки на «сдал».

Замечание. Такая стратегия студентов — единственно возможная.

Действительно, допустим, что первые несколько студентов (возможно, никто)
придерживаются указанной стратегии, а Василий — первый, кто назвал число,
не соответствующее описанной стратегии. Тогда преподаватель может поста-
вить ему оценку «не сдал», а всем после него — оценку «сдал». В этом случае
Василий дал неверный ответ, а все, кто получил оценку «не сдал» (они отвечали
до Василия), назвали число, которое больше реального числа оценок «сдал».
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Задача 5. Дана выпуклая четырехугольная пирамида с вершиной S и осно-
ванием ABCD, причём существует сфера, вписанная в эту пирамиду (то есть
расположенная внутри пирамиды и касающаяся всех её граней). Пирамиду раз-
резали по рёбрам SA, SB, SC, SD и отогнули грани SAB, SBC, SCD, SDA
вовне на плоскость ABCD так, что получился многоугольник AKBLCMDN ,
как показано на рисунке. Докажите, что точки K, L, M , N лежат на одной
окружности.
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(Tibor Bakos and Géza Kós)

Решение 1. Сделаем гомотетию с центром в S, переводящую вписанную сферу
в сферу, касающуюся плоскости ABCD с противоположной стороны; таким
образом мы получим вневписанную сферу (рис. 1). Обозначим точки касания
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Рис. 1: к решению 1 задачи 5

этой вневписанной сферы с плоскостями ABCD, ABS, BCS, CDS и DAS через
T , TK , TL, TM и TN соответственно. Покажем, что KT = LT =MT = NT , т. е.,
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что K, L, M и N лежат на одной окружности с центром T .

Заметим, что четырехугольники SBTKA и KBTA симметричны относительно
внешней биссекторной плоскости двугранного угла между гранями ABCD и
ABS; отсюда следует, что STK = KT . Аналогично STL = LT , STM = MT
и STN = NT . Кроме того, STK = STL = STM = STN , так как это отрезки
касательных к вневписанной сфере, проведенных из S.

Значит, отрезки STK , KT , STL, LT , STM , MT , STN , NT равны.

Замечание. Утверждение, аналогичное утверждению задачи, верно для любой
описнной n-угольной пирамиды. Для общего случая решения 1 и 2 остаются
в силе. Кроме того, общий случай можно спуском n 7→ n − 1 свести к случаю
n = 4.

Решение 2. Будем использовать ту же вневписанную сферу, что и в решении 1.
Обозначим её центр через J . Точка J лежит на внешней биссекторной плоскости
между гранями ABCD и DAS, таким образом, SJ = NJ (рис. 2). Повторяя эти
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Рис. 2: к решению 2 задачи 5

рассуждения для всех боковых граней, имеем SJ = KJ = LJ =MJ = NJ .

Значит, точки S, K, L,M и N лежат на сфере с центром J ; и поэтому K, L,M и
N лежат на пересечении этой сферы с плоскостью ABCD, т. е. на окружности.

Решение 3. Обозначим точки касания вписанной сферы с плоскостями ABS,
BCS, CDS и DAS через UK , UL, UM и UN соответственно.
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Отрезок AS на развертке соответствует отрезкам AK и AN , поэтому AS =
AK = AN ; аналогично BS = BK = BL, CS = CL = CM и DS = DM = DN .
(рис. 3).
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Рис. 3: к решению 3 задачи 5

Заметим, что треугольники SAUK и SAUN равны, поэтому ∠ASUK = ∠ASUN .
Аналогично ∠BSUL = ∠BSUM , ∠CSUM = ∠CSUN и ∠DSUN = ∠DSUK . От-
сюда

∠ASB + ∠CSD = ∠BSC + ∠DSA ,

а значит,
∠AKB + ∠CMD = ∠BLC + ∠DNA .

Учитывая равные углы в равнобедренных треугольниках ANK, BKL, CLM и
DMN , мы видим, что в четырёхугольнике KLMN суммы противоположных
углов равны, поэтому он вписанный. (Заметим, что треугольники ANK, BKL,
CLM и DMN могут вырождаться или иметь противоположную ориентацию.
Для полного решения здесь следует использовать ориентированные углы или
сделать разбор случаев разного расположения.)

Задача 6. Пусть p — простое число, а f(x) — многочлен степени d с целыми
коэффициентами такой, что числа f(1), f(2), . . . , f(p) дают ровно k различных
остатков при делении на p, причём 1 < k < p. Докажите, что

p− 1

d
6 k − 1 6 (p− 1)

(
1− 1

d

)
.

(Dániel Domán, Gyula Károlyi and Emil Kiss)
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Решение. Для доказательства обоих неравенств воспользуемся следующим стан-
дартным утверждением:

Факт 1. Если h(x) — многочлен с целыми коэффициентами и m = deg h < p−1,
то p делит h(1) + · · ·+ h(p).

Доказательство факта (набросок). Найдём такие целые коэффициенты c0, c1,
. . . , cm, что h(x) =

∑m
i=0 cix(x − 1)(x − 2) . . . (x − i + 1) (безем за cm старший

коэффициент h, далее вычитаем из h многочлен cmx(x − 1) . . . (x − m + 1) и
применяем индукцию по степени.) Используя представление

x(x− 1) . . . (x− s+ 1) = Fs(x+ 1)− Fs(x), Fs(x) =
x(x− 1) . . . (x− s)

s+ 1
.

получаем
p∑

k=1

h(k) =

m∑
i=0

ci(Fi(p+ 1)− Fi(1)) ,

что кратно p, поскольку у дробей в каждой скобке равные знаменатели, не
кратные p, а числители сравнимы по модулю p. Это завершает доказательство
факта.

(1) Доказательство неравенства p−1
d 6 k−1. Пусть u1, . . . , uk — все возможные

остатки, которые числа f(1), . . . , f(p) дают по модулю p. Положим g(x) =
(f(x)− u1) . . . (f(x)− uk−1). Многочлен g(x) по модулю p принимает ровно два
значения: 0 и (uk − u1) . . . (uk − uk−1). Тогда

∑p
k=1 h(k) не кратно p и по факту

1 получаем deg g > p− 1, то есть d(k − 1) > p− 1.

Далее нам понадобится следующий хорошо известный

Факт 2. Пусть w1, . . . , ws — не обязательно различные остатки по модулю p, и
s 6 p− 1. Тогда значения по модулю p сумм rj := wj

1 + . . .+ wj
s при j = 1, . . . , s

однозначно определяют мультимножество {w1, . . . , ws}.

Доказательство факта (набросок). Предположим противное, то есть есть два
различных мультимножества остатков с одинаковыми значениями r1, . . . , rs
по модулю p. Удаляя из обоих мультимножеств их общие элементы (и соот-
ветственно уменьшая s), сводим факт к случаю, когда наши мультимножества
{w1, . . . , ws} и {u1, . . . , us} не пересекаются. Значения r1, . . . , rs по модулю p
однозначно определяют значения по модулю p элементарных симметрических
многочленов

σ0 = 1, σk =
∑

i1<...<ik

wi1 . . . wik при k = 1, . . . , s.

Это следует, например, из тождеств Ньютона

kσk =

k∑
i=1

(−1)i−1σk−iri
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с помощью индукции по k (благодаря тому, что k 6 s < p, значение kσk по
модулю p определяет значение σk по модулю p.) Числа (−1)iσi, 0 6 i 6 s —
это коэффициенты многочлена (x − w1) . . . (x − ws). Но значения многочленов
(x − w1) . . . (x − ws) и (x − u1) . . . (x − us) различны по модулю p, например, в
точке x = u1. Противоречие. Это завершает доказательство факта.

(2) Доказательство неравенства k−1 6 (p−1)(1− 1
d ). Обозначим s := p−k 6 p−

2 и предположим, что k−1 > (p−1)(1− 1
d ), то есть ds < p−1. Мультимножество

A = {f(1), f(2), . . . , f(p)} остатков по модулю p может быть представлено как

A = ({0, 1, . . . , p− 1} \ {w1, . . . , ws}) ∪ {u1, . . . , us} ,

где w1, . . . , ws — остатки, не принимаемые значениями многочлена f , а u1,
. . . , us — остатки, принимаемые более одного раза (с учётом кратности). По-
скольку многочлены f(x), (f(x))2, . . . , (f(x))s имеют степени меньше чем p− 1,
с помощью факта 1 получаем

∑
a∈A

aj =

p∑
k=1

(f(k))j ≡ 0 (mod p), j = 1, . . . , s .

С другой стороны, по модулю p имеем

∑
a∈A

aj =

p∑
i=1

ij +

s∑
i=1

wj
i −

s∑
i=1

uji =

s∑
i=1

wj
i −

s∑
i=1

uji , j 6 p− 2.

Таким образом, по факту 2 мультимножества {w1, . . . , ws} и {u1, . . . , us} совпа-
дают. Противоречие.
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