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Problem 4. There are 100 students taking an exam. The professor calls them one
by one and asks each student a single question: “How many of 100 students will
have a “passed” mark by the end of this exam?” The student’s answer must be an
integer. Upon receiving the answer, the professor immediately publicly announces
the student’s mark, which is either “passed” or “failed”.

After all the students have got their marks, an inspector comes and checks if there
is any student who gave the correct answer but got a “failed” mark. If at least one
such student exists, then the professor is suspended and all the marks are replaced
with “passed”. Otherwise no changes are made.

Can the students come up with a strategy that guarantees a “passed” mark to each
of them? (Denis Afrizonov)

Solution. The students can come up with the following strategy. Every student tells
the number of students who already have the “passed” mark plus the number of
students whose turn to answer has not come yet. In other words, if k students have
already received a “failed” mark, the answer should be 99− k.

Let us prove that this strategy works. If all the students receive a “passed” mark,
we are done. Otherwise consider the last (in order) student who has received a
“failed” mark; denote him by Peter. Since all the students after him (if there are
any) received a “passed” mark, then Peter’s answer is correct. Thus the professor
will get suspended and the students win.

Note. The students’ winning strategy is unique.

To show this, consider the first student who deviated from our strategy; denote him
by Basil. The professor can mark him “failed” and mark everyone after him “passed”.
All answers of the students before him will be rendered incorrect (according to the
strategy, they will all give a larger answer), and his answer will be wrong, too
(because the right answer would be given by the strategy). This means that Basil
will remain “failed”.

Problem 5. We are given a convex four-sided pyramid with apex S and base face
ABCD such that the pyramid has an inscribed sphere (i.e., it contains a sphere
which is tangent to each face). By making cuts along the edges SA, SB, SC, SD
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and rotating the faces SAB, SBC, SCD and SDA outwards into the plane ABCD,
we unfold the pyramid to the polygon AKBLCMDN as shown in the figure. Prove
that points K, L, M , N are concyclic.
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(Tibor Bakos and Géza Kós)

Solution 1. Dilate the inscribed sphere from the point S in such a way that its
image is tangent to the plane ABCD from the opposite side; we obtain another
tangent sphere exscribed to the base face of the pyramid (fig. 1). Denote the points
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Figure 1: for the solution 1 of the problem 5

of tangency between the excribed sphere and the planes ABCD, ABS, BCS, CDS
and DAS by T , TK , TL, TM and TN , respectively. We will show that KT = LT =
MT = NT , so points K, L, M and N lie on a circle centred at T .

Notice that the quadrilaterals SBTKA and KBTA are symmetrical about the exter-
nal dihedral angle bisector plane between faces ABCD and ABS; this implies that
STK = KT . We can see analogously that STL = LT , STM =MT and STN = NT .

2



Moreover STK = STL = STM = STN because these are tangent segments to the
exsphere from S.

Hence, the segments STK , KT , STL, LT , STM , MT , STN , NT are all equal.

Note. The statement remains true for all circumscribed n-gon pyramids. For general
case, we can repeat solution 1 or solution 2, without changes. Alternatively, one
could reduce the general case to the case n = 4 by steps n 7→ n− 1.

Solution 2. We will use the same exsphere as in Solution 1. Denote its center by J .
Point J lies in the external dihedral angle bisector plane between faces ABCD and
DAS, so SJ = NJ (fig. 2). Repeating this observation for each side face, we can
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Figure 2: for the solution 2 of the problem 5

see that SJ = KJ = LJ =MJ = NJ .

Hence, the points S, K, L, M and N lie on a sphere with center J ; therefore K,
L, M and N lie in the common part of that sphere with plane ABCD which is a
circle.

Solution 3. Denote the points of tangency between the inscribed sphere and the
planes ABS, BCS, CDS and DAS by UK , UL, UM and UN , respectively.

The segment AS is rotated to AK and AN , so AS = AK = AN ; analogously we
have BS = BK = BL, CS = CL = CM and DS = DM = DN (fig. 3).

Notice that the triangles SAUK and SAUN are congruent, so ∠ASUK = ∠ASUN .
Simlarly, we have ∠BSUL = ∠BSUM , ∠CSUM = ∠CSUN and ∠DSUN = ∠DSUK .
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Figure 3: for the solution 3 of the problem 5

These together show that

∠ASB + ∠CSD = ∠BSC + ∠DSA

so
∠AKB + ∠CMD = ∠BLC + ∠DNA .

Together with the isosceles triangles ANK, BKL, CLM and DMN , we can see
that in the quadrilateral KLMN the sum of the opposite angles are equal, so the
quadrilateral is cyclic. (Note that the the triangles ANK, BKL, CLM and DMN
may degenerate or have opposite orientation. For a complete solution we need to
use oriented angles or perform some case consideration.)

Problem 6. Let p be a prime number and let f(x) be a polynomial of degree d with
integer coefficients. Assume that the numbers f(1), f(2), . . . , f(p) leave exactly k
distinct remainders when divided by p, and 1 < k < p. Prove that

p− 1

d
≤ k − 1 ≤ (p− 1)

(
1− 1

d

)
.

(Dániel Domán, Gyula Károlyi and Emil Kiss)

Solution. For both inequalities we will use the standard

Fact 1. If h(x) is a polynomial with integer coefficients and m = deg h < p− 1, then
p divides h(1) + · · ·+ h(p).
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Proof of the fact (sketch). We may find the integer coefficients c0, c1, . . . , cm such
that h(x) =

∑m
i=0 cix(x− 1)(x− 2) . . . (x− i+1) (take the leading coefficient of h as

cm, then subtract cmx(x − 1) . . . (x −m + 1) from h and induct on degree.) Using
the representation

x(x− 1) . . . (x− s+ 1) = Fs(x+ 1)− Fs(x), Fs(x) =
x(x− 1) . . . (x− s)

s+ 1

we get
p∑

k=1

h(k) =

m∑
i=0

ci(Fi(p+ 1)− Fi(1))

that is divisible by p, because Fi(p+1)−Fi(1) is the difference of two fractions with
the same denominators not divisible by p and with numerators equivalent modulo
p. This concludes the proof of the fact.

(1) Proof of p−1
d ≤ k − 1. Let u1, . . . , uk be all remainders given by f(1), . . . ,

f(p) modulo p. Denote g(x) = (f(x) − u1) . . . (f(x) − uk−1). The polynomial g(x)
takes exactly two values modulo p: 0 and (uk−u1) . . . (uk−uk−1). Then

∑p
k=1 h(k)

is not divisible by p and by Fact 1 we get deg g ≥ p − 1, which is equivalent to
d(k − 1) ≥ p− 1.

To prove the rest of the statement, we will use the following well-known

Fact 2. Let w1, . . . , ws be (not necessarily distinct) residues modulo p, and s ≤ p−1.
Then the values modulo p of the power sums rj := wj

1 + · · · + wj
s for j = 1, . . . , s

uniquely determine the multiset {w1, . . . , ws}.

Proof of the fact (sketch). Assume the contrary, i.e., that there exist two different
multisets with the same remainders of r1, . . . , rs modulo p. By removing the common
elements from these multisets (and decreasing s accordingly), we reduce the fact to
the case when our multisets {w1, . . . , ws} and {u1, . . . , us} are disjoint.

The values of r1, . . . , rs modulo p uniquely determine the values modulo p of ele-
mentary symmetric polynomials

σ0 = 1, σk =
∑

i1<···<ik

wi1 . . . wik for k = 1, . . . , s.

For example, this follows from Newton identities

kσk =

k∑
i=1

(−1)i−1σk−iri

by induction in k (since k ≤ s < p, the remainder of kσk modulo p uniquely deter-
mines the remainder of σk modulo p.) But the numbers (−1)iσi, i = 0, . . . , s are the
coefficients of the polynomial (x−w1) . . . (x−ws). On the other hand, the values of
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the polynomials (x−w1) . . . (x−ws) and (x−u1) . . . (x−us) modulo p are distinct,
for example, at x = u1. Contradiction. This concludes the proof of the fact.

(2) Proof that k−1 ≤ (p−1)(1− 1
d ). Now denote s := p−ks ≤ p−2 and assume that

k−1 > (p−1)(1− 1
d ) that reads as ds < p−1. The multiset A = {f(1), f(2), . . . , f(p)}

of residues modulo p may be represented as

A = ({0, 1, . . . , p− 1} \ {w1, . . . , ws}) ∪ {u1, . . . , us} ,

where w1, . . . , ws are the residues not taken by f , and u1, . . . , us are the residues
taken more than once (with multiplicity taken into account). Since the polynomials
f(x), (f(x))2, . . . , (f(x))s have degrees less than p− 1, using Fact 1 we get

∑
a∈A

aj =

p∑
k=1

(f(k))j ≡ 0 (mod p), j = 1, . . . , s .

On the other hand, modulo p we have

∑
a∈A

aj =

p∑
i=1

ij +

s∑
i=1

wj
i −

s∑
i=1

uji =

s∑
i=1

wj
i −

s∑
i=1

uji , j ≤ p− 2.

Therefore the multisets {w1, . . . , ws} and {u1, . . . , us} coincide by Fact 2. Contra-
diction.
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