The 3rd Olympiad of Metropolises

Day 2. Solutions

Problem 4. Let 1 =dy < dy < ... < d,, = 4k be all positive divisors of 4k, where
k is a positive integer. Prove that there exists ¢ € {1,...,m} such that d; —d;_1 = 2.
(Ivan Mitrofanov)

Solution 1. Assume the contrary. This means that if d and d + 2 both divide 4k,
then d+ 1 also divides 4k. Note that if a divides 4k and a is not divisible by 4, then
2a also divides 4k. Using the properties above, we start from the pair (1,2) and find
more pairs (a,a+ 1) such that both a and a + 1 divide 4k and both a and a + 1 are
not divisible by 4.

Let (a,a+ 1) be a pair of divisors of 4k such that 4 divides neither a nor a+1. Then
2a and 2a + 2 divide 4k, hence 2a + 1 divides 4k. One of 2a or 2a + 2 is not divisible
by 4, hence in one of pairs (2a,2a + 1), (2a + 1,2a + 2) both numbers divide 4k, but
are not divisible by 4.

Apply this procedure to the new pair, and so on. Thus, starting from the pair (1, 2)
we obtain pairs (2,3), (5,6), (10,11), etc. At each step the sum of numbers in pair
increases, hence we obtain an infinite set of divisors of 4k. A contradiction. O

Solution 2. Assume the contrary. Let ¢ be the minimal positive integer that does
not divide 4k. Then 1, 2, ..., t — 1 divide 4k, while ¢ and ¢ + 1 do not (otherwise
t — 1 and t + 1 would be two consecutive divisors of 4k).

It follows that ¢ and ¢ + 1 are prime powers, otherwise one of them would be a
product of two coprime multiples less than ¢ and would therefore divide 4k. One of
them is a power of 2 that we denote as 2™, m > 3. The other has a form of 2™ + ¢,
€==l1.

Observe that 2! divides 4k, since 2™ is the minimal even non-divisor of 4k, and
that 3-2™~2 +¢ divides 4k, since it is odd and less than 2™ +¢, which is the minimal
odd non-divisor of 4k. Also note that 3 divides 4k.

It follows that 3-2™~! and 2- (3 -2™72 4 ¢) also divide 4k. Hence, the number
3-2™~! t ¢ between them divides 4k too. But now 4k is divided by 2-(3-2™71 +¢),
just as 4+ (3-2m72 4+ ¢). The number 3 - (2™ + ¢) is between them, and must be a
divisor of 4k as well. We conclude that 2™ + ¢ divides 4k, contradiction. O]

Problem 5. Ann and Max play a game on a 100 x 100 board.

First, Ann writes an integer from 1 to 10000 in each square of the board so that
each number is used exactly once.



Then Max chooses a square in the leftmost column and places a token on this square.
He makes a number of moves in order to reach the rightmost column. In each move
the token is moved to a square adjacent by side or by vertex. For each visited square
(including the starting one) Max pays Ann the number of coins equal to the number
written in that square.

Max wants to pay as little as possible, whereas Ann wants to write the numbers in
such a way to maximise the amount she will receive. How much money will Max
pay Ann if both players follow their best strategies? (Lev Shabanov)

Answer: 500000 coins.

Solution. Lower bound / Ann’s strategy. First we will prove that Ann can get at
least 500000 coins. Suppose Ann has arranged the numbers in the way depicted on
the fig. 1.

1 1200|201 400 --- [9800|9801{10000
2 1199202399 | --- |9799]9802|9999
3 11981203 |398 | --- |9798]9803|9998
4 | 197|204 | 397 | --- |9797]|9804]|9997
98 | 103|298 | 303 | --- |9703|9898/9903
99 1102|299 | 302 | --- |9702/9899|9902
100 | 101 | 300 | 301 | --- {9701|9900{9901

Figure 1: for the solution of problem 5.

Consider a path constructed by Max. For every integer 1 < n < 50 there are two
squares of the path in the columns 2n — 1 and 2n, respectively, which are adjacent
by a move of the token. It is easy to see that the sum of the numbers in such
squares is at least 200(2n — 1). We obtain that the cost of this path is at least
200(1+3+5+...+99) = 500000 coins.

Upper bound / Max’s strategy. Now consider an arbitrary arrangement of the num-
bers. Then exclude the square with the greatest number in each column. The least
of the numbers in excluded squares is not less than 100, the second least is not less
than 200, etc, the greatest number in excluded square is 10 000. Hence, the sum of
the excluded numbers is at least 1004200+ ...+ 10000 = 505 000, while the sum of



numbers in the whole square is 50 005000. It means that the sum of the remaining
numbers is at most 49 500 000.

The 9900 squares which are left can be split into 99 distinct paths. The first path
consists of the lowest squares in each column which are not excluded, the second
path consists of the lowest squares in each column which are not excluded and not
included into the first path, etc. The last path will include the uppermost squares
in each column which are not excluded. It is easy to see that all 99 paths are proper
paths that Max’s token can follow, because any two squares in two adjacent columns
either lie in the same row or in two adjacent rows.

The total cost of the constructed 99 paths is not greater than 49 500 000, therefore
one of these paths costs at most 500 000 coins. Thus in every arrangement of numbers
Max can pay less than or equal to 500 000 coins.

We proved that Max can pay 500000 coins or less while Ann can make Max pay at
least 500000 coins, so the answer is 500 000. O

Alternate proof of the upper bound. Split our board into 50 horizontal rectangles
2 x 100. Since the sum of numbers in the whole board is 50005000, it is possible
to choose a rectangle with the sum of at most 1000100. Take a square with the
minimum number in each column of the chosen rectangle. These squares form a path
from the square in the left column to the square in the right column; denote the cost
of this path as S. In each column of the rectangle, the minimal number is less than
the other number by at least 1. Hence, the total sum of the numbers in the rectangle
is at least 25 + 100. It follows that 25 + 100 < 1000100 and S < 500 000. O

Problem 6. The incircle of a triangle ABC touches the sides BC and AC' at points
D and FE, respectively. Suppose P is the point on the shorter arc DFE of the incircle
such that ZAPE = Z/DPB. The segments AP and BP meet the segment DFE at
points K and L, respectively. Prove that 2K L = DE. (DuSan Djukic)

A property of the symmedian. The symmedian of a triangle from one of its vertices
is defined as the reflection of the median from that vertex about the bisector from
the same vertex (fig. 2). In the following solutions we will use a well-known property
of the symmedian, namely that it passes through the intersection of the tangents to
the circumcircle of the triangle taken at the other two vertices.

Solution 1. Denote by F' the tangency point of the incircle with the side AB, and
by M and N respectively the midpoints of the segments EF and DF (fig. 3). Since
PB is the symmedian in the triangle DPF, we have /KPE = /DPB = /NPF.
Moreover, /PEK = /PED = /PFN, so APEK ~ APFN. Analogously,

APDL ~ APFM. Now we obtain EK = FN - £& = BEELE and similarly

DL = FM - 88 = EEFD g0 EK + DL = PEPELEEPD — 1DE by Ptolemy’s
theorem. Therefore, KL = DE — EK — DL = 1DE. O

Solution 2. Denote by F' the tangency point of the incircle with the side AB. Con-



Figure 2: for the solution of problem 6.
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Figure 3: for the solution of problem 6.

sider a point S on the segment E'D such that /PSE = /PDF and /PSD = /PEF
(fig. 4). Triangles PSE and PDF are similar because /ZPED = /PFD. Since
ZDPB = ZKPFE and PB is a symmedian in triangle PDF, the line PK must
be a median in the triangle PSFE. It follows that EK = KS. Similarly, we have
DL = LS. Therefore, 2KL =2KS5+2SL=FK+ KS+ SL+ LD = ED. O

Solution 3. Again, denote by F' the tangency point of the incircle with the side AB.
Let the segments AP and BP intersect the incircle again at X and Y, respectively.



Figure 4: for the solution of problem 6.

C

Figure 5: for the solution of the problem 6.

Since the arcs EX and DY are congruent, we have XY || DE. Let the lines PF and
EY meet at point @ (fig. 5). The quadrilaterals EPFX and YFPD are harmonic,
and the projection with the center @ from the incircle to itself maps points E, P, F’



to Y, F, P, respectively. Therefore, this projection also sends X to D, i.e. the line
X D also passes through Q.

Now let ¢ be the line passing through the intersection point of X F and Y D, parallel
to DE. Consider the projective transformation preserving the incircle that takes
line ¢ to the infinity line. The lines DE, XY and ¢ will remain parallel under this
transformation and the ratio K L/DFE will not change. Moreover, the quadrilaterals
XFEPF and DY FP will remain harmonic. Thus we obtain fig. 6.
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Figure 6: for the solution of the problem 6.

The quadrilateral XY DFE is a rectangle and () is the center, so P and F' are diamet-
rically opposite. Suppose the line XY meets the segments EF and DF' at points
U and V, respectively. Since X P is a symmedian in AFXF and the shorter arcs
EP and FY are equal, the line XU is a median in AEXF, i.e. EU = UF. Anal-
ogously, DV = V' F. It follows that the triangles EF'D and UFYV are proportional,
so DE/2 =UV = KL by symmetry. O



