
3-я Олимпиада Мегаполисов

День 1. Решения

Задача 1. Решите систему уравнений в действительных числах:{
(x− 1)(y − 1)(z − 1) = xyz − 1 ,

(x− 2)(y − 2)(z − 2) = xyz − 2 .

(Vladimir Bragin)

Ответ: x = 1, y = 1, z = 1.

Решение 1. Раскрыв скобки и сократив общие члены, мы получаем{
− (xy + yz + zx) + (x+ y + z) = 0 ,

− 2(xy + yz + zx) + 4(x+ y + z) = 6 .

Из первого уравнения заключаем xy + yz + zx = x + y + z. Подставляя это во
второе уравнение, получаем x+ y + z = 3. Теперь осталось решить систему{

x+ y + z = 3 ,

xy + yz + zx = 3 .
(1)

Возведя первое равенство в квадрат, получаем x2+y2+z2+2(xy+yz+zx) = 9.
Отсюда извлекаем x2 + y2 + z2 = 3 = xy + yz + zx.

Докажем, что если x2 + y2 + z2 = xy + yz + zx, то x = y = z:

x2 + y2 + z2 = xy + yz + zx ⇐⇒
2x2 + 2y2 + 2z2 = 2xy + 2yz + 2zx ⇐⇒

x2 − 2xy + y2 + x2 − 2xz + z2 + y2 − 2yz + z2 = 0 ⇐⇒
(x− y)2 + (x− z)2 + (y − z)2 = 0 .

Сумма трёх квадратов равна 0, поэтому они все нули, а значит x = y = z.
Отсюда следует, что x = y = z = 1.

Решение 1’. Покажем, как ещё можно было решить систему (1). Из первого
уравнения выразим z = 3− x− y и подставим во второе:

xy + (y + x)(3− x− y) = 3 ⇐⇒
xy + 3x+ 3y − 2xy − x2 − y2 = 3 ⇐⇒
x2 + y2 + xy − 3x− 3y + 3 = 0 ⇐⇒
x2 + x(y − 3) + y2 − 3y + 3 = 0 .
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Решим как квадратное уравнение относительно x:

x =
(3− y)±

√
(y − 3)2 − 4(y2 − 3y + 3)

2
=

=
(3− y)±

√
y2 − 6y + 9− 4y2 + 12y − 12

2
=

=
(3− y)±

√
−3y2 + 6y − 3

2
=

=
(3− y)±

√
−3(y − 1)2

2
.

Чтобы квадратный корень существовал, необходимо y = 1. Тогда из предыду-
щей строчки легко можно понять, что x = 1, а значит и z = 1.

Решение 2. Сделаем замену: u = x − 1, v = y − 1, w = z − 1. Тогда условие
перепишется в виде {

(u+ 1)(v + 1)(w + 1) = uvw + 1 ,

(u− 1)(v − 1)(w − 1) = uvw − 1 ,

(где второе уравнение на самом деле соответствует разности двух исходных).

После раскрытия всех скобок и сокращения общих членов получаем{
uv + uw + vw + u+ v + w = 0 ,

− (uv + uw + vw) + u+ v + w = 0 .

Вычитая и складывая уравнения, находим uv + uw + vu = 0 и u + v + w = 0.
Наконец, заметим, что

u2 + v2 + w2 = (u+ v + w)2 − 2(uv + uw + vw) = 0− 0 = 0 ,

откуда следует u = v = w = 0, и, соответственно, x = y = z = 1.

Решение 3. Рассмотрим многочлен f(t) = (t− x)(t− y)(t− z) с корнями x, y, z.
Перепишем условие в виде {

− f(1) = −f(0)− 1 ,

− f(2) = −f(0)− 2 .

Теперь рассмотрим многочлен g(t) = f(t)− f(0)− t. Заметим, что его старший
коэффициент равен 1, а числа 0, 1 и 2 являются его корнями. Поэтому g(t) =
t(t− 1)(t− 2), то есть

f(t) = g(t) + t+ f(0) = t(t− 1)(t− 2) + t+ f(0) =

= t(t2 − 3t+ 3) + f(0) = t3 − 3t2 + 3t− 1 + f(0) + 1 = (t− 1)3 + f(0) + 1 .
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Заметим, что многочлен (t− 1)3 + f(0) + 1 — возрастающая функция, поэтому
три корня у него могут быть, только если они равны. Предположим, они равны
c. Тогда c является и корнем производной f ′(t) = 3(t− 1)2, а её корни равны 1.
Значит, x = y = z = 1.

Задача 2. Выпуклый четырехугольник ABCD описан около окружности ω.
Пусть PQ — диаметр ω, перпендикулярный AC. Известно, что прямые BP и
DQ пересекаются в точке X, а прямые BQ и DP — в точке Y . Докажите, что
точки X и Y лежат на прямой AC. (Géza Kós)

Решение. Точки P и Q входят в условие симметрично, поэтому без ограничения
общности можно считать, что точка P лежит внутри треугольника ACD, а
точка Q — внутри треугольника ABC.

Часть 1. Обозначим вписанные окружности треугольников ABC и ACD через
ω1 и ω2, а их точки касания с диагональю AC — через X1 и X2 соответственно.
Мы покажем, что прямая BP проходит через точку X1, прямая DQ проходит
через точку X2, и что точки X1 и X2 совпадают. Из этого будет следовать, что
X1 = X2 = X, то есть что точка X лежит на AC (рис. 1).
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Рис. 1: к решению задачи 2.

Известно, что длины отрезков касательных AX1 и AX2 могут быть выражены
через стороны треугольников следующим образом:

AX1 =
1

2
(AB +AC −BC) и AX2 =

1

2
(AC +AD − CD) .

Из описанности четырёхугольника ABCD имеем равенство AB + CD = BC +
AD, откуда

AX1 −AX2 =
1

2
(AB −BC −AD + CD) = 0, ,
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поэтому X1 = X2.

Поскольку BA и BC являются общими внешними касательными к ω и ω1, эти
окружности гомотетичны с центром в точке B. Касательные к ω в точке X1 и
к ω1 в точке P параллельны, поэтому эта гомотетия переводит точку P в точку
X1. Значит, точки B, P , X1 лежат на одной прямой.

Аналогично из гомотетичности окружностей ω и ω2 точки D, Q, X2 лежат на
одной прямой.

Часть 2. Обозначим через γ1 и γ2 вневписанные окружности треугольников
ABC и ACD, лежащие напротив вершин B и D соответственно, а их точки
касания с диагональю AC — через Y1 и Y2 соответственно. Аналогично пер-
вой части, мы покажем, что прямая BQ проходит через точку Y1, прямая DP
проходит через точку Y2, и что точки Y1 и Y2 совпадают (рис. 2).
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Рис. 2: for the solution of the problem 2.

Длины отрезков касательных AY1 и AY2 могут быть выражены через стороны
треугольников следующим образом:

CY1 =
1

2
(AB +AC −BC) и CY2 =

1

2
(AC +AD − CD) ,

откуда из равенства AB+CD = BC +AD получаем, что CY1 = CY2 и Y1 = Y2.

Окружности ω и γ1 гомотетичны с центром в точке B. Касательные к ω в точке
Q и к γ1 в точке X1 параллельны, поэтому эта гомотетия переводит точку Q в
точку Y1. Таким образом, точки B, Q, Y1 лежат на одной прямой.

Аналогично из гомотетичности окружностей ω и ω2 точки D, P , Y2 лежат на
одной прямой.
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Задача 3. Пусть k — такое натуральное число, что p = 8k+5 — простое число.
Целые числа r1, r2, . . . , r2k+1 таковы, что числа 0, r41, r

4
2, . . . , r

4
2k+1 дают попарно

различные остатки при делении на p. Докажите, что произведение∏
16i<j62k+1

(r4i + r4j )

сравнимо с (−1)k(k+1)/2 по модулю p.

(Два целых числа сравнимы по модулю p, если их разность делится на p.)
(Fedor Petrov)

Решение 1. Воспользуемся существованием первообразного корня g по модулю
p, то есть такого целого числа, что числа 1, g, g2, . . . , gp−2 дают все различные
ненулевые остатки по модулю p. Две степени g, скажем gm и gk, сравнимы
по модулю p тогда и только тогда, когда m и k сравнимы по модулю p − 1
(«тогда» в силу малой теоремы Ферма, а «только тогда» — поскольку g является
первообразным корнем).

Четвёртые степени дают в точности 2k + 1 ненулевых остатков по модулю p, а
именно, это остатки чисел 1, g4, g8, . . . , g8k. Поэтому числа r41, . . . , r42k+1 сравни-
мы с ними по модулю p (в каком-то порядке).

Определим отображение f(j) : {0, 1, . . . , 2k} → {0, 1, . . . , 2k} как остаток 2j по
модулю 2k + 1. Заметим, что 8j и 4f(j) сравнимы по модулю p− 1 = 4(2k + 1),
поэтому g8j ≡ g4f(j) (mod p) при всех j = 0, 1, . . . , 2k.

Имеем∏
16i<j62k+1

(r4j + r4i ) =
∏

16i<j62k+1

r8j − r8i
r4j − r4i

≡

≡
∏

06i<j62k

g8j − g8i

g4j − g4i
≡

∏
06i<j62k

g4f(j) − g4f(i)

g4j − g4i
(mod p) .

Можно записать g4f(j) − g4f(i) = ±(g4max(f(j),f(i)) − g4min(f(j),f(i))), где знак по-
ложителен при f(j) > f(i) и отрицателен при f(j) < f(i). Далее, когда упорядо-
ченная пара (i, j) пробегает множество всех k(2k + 1) упорядоченных пар, для
которых 0 6 i < j 6 2k, упорядоченная пара

(
min(f(j), f(i)),max(f(j), f(i))

)
пробегает то же множество. Поэтому разности сокращаются и произведение от-
ношений

∏ g4f(j)−g4f(i)

g4j−g4i оказывается равно (−1)N , где N — количество пар i < j,
для которых f(i) > f(j). Это происходит при i = 1, 2, . . . , k; j = k + 1, . . . , k + i,
так что N = 1 + . . .+ k = k(k + 1)/2. Утверждение доказано.

Решение 2. Обозначим ti = r4i . Заметим, что множество T := {t1, . . . , t2k+1} —
это все различные корни многочлена x2k+1−1 в поле вычетов по модулю p. Пе-
ренумеруем элементы T так, чтобы tk+1 = 1 и ti = 1/t2k+2−i при i = 1, 2, . . . , k.
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Отображение t 7→ t2 — биекция множества T , обратное к нему отображение —
это s 7→ sk+1, которое мы естественным образом обозначим как

√
s. Для раз-

личных t, s ∈ T выполнено равенство t + s =
√
st(
√
s/t +

√
t/s). В следующей

формуле
∏

обозначает произведение по всем k(2k+1) парам различных t, s ∈ T .
Тогда получаем

∏
(t+ s) =

∏√
st ·
∏(√

s/t+
√
t/s
)
=

(∏
t∈T

t

)k

·

(
k∏

i=1

(ti + 1/ti)

)2k+1

.

Из теоремы Виета для многочлена x2k+1− 1 =
∏

t∈T (x− t) следует, что первый
множитель равен 1. Перейдём ко второму множителю; заметим, что существует
многочлен ψ(x) с целыми коэффициентами, для которого

ψ
(
x+

1

x

)
= xk + xk−1 + . . .+ 1 + . . .+ x−k .

Старший коэффициент ψ, очевидно, равен 1. Свободный член можно вычис-
лить, подставляя мнимую единицу x = i; свободный член равен

ψ(0) = ψ
(
i +

1

i

)
=

k∑
j=−k

ij =

{
1 при k ≡ 0, 1 (mod 4) ,

−1 при k ≡ 2, 3 (mod 4) .

В поле вычетов по модулю p корнями ψ являются остатки ti+1/ti, i = 1, 2, . . . , k
(эти остатки различны). Произведение корней многочлена равно

k∏
i=1

(ti + 1/ti) = (−1)k · ψ(0) =

{
1 при k ≡ 0, 3 (mod 4) ,

−1 при k ≡ 1, 2 (mod 4) .

И мы, наконец, получаем

∏
(t+ s) =

{
1 при k ≡ 0, 3 (mod 4) ,

−1 при k ≡ 1, 2 (mod 4) .
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