The 3rd Olympiad of Metropolises

Day 1. Solutions

Problem 1. Solve the system of equations in real numbers:
{(x— Dy-D(E-1)=ayz -1,
(x=2)(y—2)(z —2) =zyz — 2.
(Viadimir Bragin)
Answer: x=1,y=1,z=1.

Solution 1. By expanding the parentheses and reducing common terms we obtain
—(zy+yz+za)+(z+y—+2)=0,
{—2(my+yz+zm)+4(w+y+z) =6.

From the first equation we can conclude that zy+yz+22x = x+y+2. By substituting

this into the second equation, we obtain that x + y + z = 3. We now have to solve
the system

(1)

r+y+z2=3,
zy+yz+zx=3.

If we square the first equation, we get 2 + y% + 22 + 2(xy + yz + 2x) = 9. Hence
22+ + 22 =3 =2y +yz+ 2.

We will prove that if £2 + % + 22 = xy + yz + 2z, than ¢ = y = 2:
x2+y2+22:wy+yz+zx <~
2% + 297 4+ 22% = 2wy + 2yz + 222 =
2 =2y 4P+ —2ar+ 2249 -2+ 2P =0 =
(z =y +(@—2)7°+(y—2°=0.

The sum of three squares is 0, so all of them are zeroes, which implies z = y = z.
That means x =y =2z = 1. O

Solution 1°. We will show one more way to solve the system (1). Express z = 3—x—y
from first equation and substitute it into the second one:

zy+y+z)3-—2x—y) =3 —
zy+3z+3y—2zy—a’ —y =3 —
P4y tay—3r—3y+3=0 <
2 +ax(y—3)+y*—3y+3=0.



Let us solve it as a quadratic equation over variable x:

(3—y)+/(y—3)? —4(y> — 3y + 3)

2
By kP —6by+9—4y2+ 12y — 12
— 5 =
By By +6y—3
— 5 =
_ Byt V317

2

We can conclude that y = 1, because otherwise the square root wouldn’t exist. It
follows that z = % =1, and then z = 1. O

Solution 2. Let’s make variable substitution u =z — 1, v=y—1, w=2—1. We
obtain the system

(u+Dw+1D)(w+1) =uvw+1,
(u—1w—-1)(w—-1)=uww-1,

(where the latter equation actually corresponds to the difference between two original
equations).

After expanding all parentheses and reducing common terms we have

w +uw+vw+u+v+w=0,
—(w+uw+ovw)+ut+v+w=0.

By taking the sum and the difference of these equations, we obtain wv +uw +vu = 0
and u + v + w = 0. Finally, observe that

w? + v +w? = (utv+w)? = 2w +uw+ovw) =0-0=0,

from which u = v =w =0 follows, and r =y =2z = 1. O

Solution 3. Consider the polynomial f(t) = (t — z)(t — y)(t — z) with roots z, y, z.
We can rewrite the system as

—f(1) =—=£(0) -1,
—f(2)=—£(0) -2.

Now consider the polynomial g(¢) = f(t) — f(0) — ¢. Its main coefficient is 1, and 0,
1 and 2 are its roots. Hence g(t) = t(t — 1)(t — 2). It follows that

ft)

gt)+t+ f0)=t(t—1D(Et—2)+t+ f(0) =
=t(t? =3t +3)+ f0)=t> =32 +3t — 1+ f(0) +1=(t—1)> + f(0) + 1.



Observe that (t—1)3+ f(0) +1 is an increasing function, which means that different
real numbers cannot be its roots. So x = y = z and also x is also the root of the
derivative of f(t). But f'(t) =3(t — 1)?, hence z =y = z = 1. O

Problem 2. A convex quadrilateral ABCD is circumscribed about a circle w. Let
PQ be the diameter of w perpendicular to AC. Suppose lines BP and D@ intersect
at point X, and lines BQ and DP intersect at point Y. Show that the points X
and Y lie on the line AC. (Géza Kos)

Solution. The role of points P and @ is symmetrical, so without loss of generality
we can assume that P lies inside triangle AC'D and @ lies in triangle ABC.

Part 1. Denote the incircles of triangles of ABC' and AC'D by w; and wo and denote
their points of tangency on the diagonal AC by X; and Xs, respectively. We will
show that line BP passes through X7, DQ passes through X5 and X; = X5. Then
it follows that X = X; = X, is lying on AC (fig. 1).

Figure 1: for the solution of the problem 2.

As is well-known, the tangent segments AX; and AX5 to the incircles can be ex-
pressed in terms of the side lengths as

AX; = =(AB+ AC — BC) and AX,= -(AC+ AD —CD).

1 1
2 2
Since the quadrilateral ABC' D has an incircle, we have AB + CD = BC' + AD and
therefore

AXl—AXQ:%(AB—BC—AD—FCD):O;

this proves X1 = Xo.



By having the common tangents BA and BC, the circles w are w; are homothetic
with center B. The tangents to w at X; and to w; at P are parallel, so this homothety
maps P to X;. Hence, the points B, P, X; are collinear.

Similarly, from the homothety that maps w to ws, one can see that D, @), X5 are
collinear.

Part 2. Now let v, and -5 be the excircles of triangles of ABC and AC D, opposite to
vertices B and D, respectively, and denote their points of tangency on the diagonal
AC by Y7 and Y3, respectively. Analogously to the first part, we will show that line
BQ passes through Y7, DP passes through Y5 and Y7 = Y5 (fig. 2).

D

Figure 2: for the solution of the problem 2.

The tangent segments C'Y; and CY5 to the excircles can be expressed as
1 1
CY; = i(AB +AC — BC) and CY; = §(AO +AD - CD);
by AB + CD = BC + AD it follows that CY; = CYs, s0 Y] = Y5.

The circles w and v, are homothetic with center B. The tangents to w and v, at @
and Y7 are parallel so this homothety maps @ to Y;. Hence, the points B, ), Y; are
collinear.

Similarly, from the homothety that maps w to 2, one can see that D, P, Y5 are
collinear. O

Problem 3. Let k be a positive integer such that p = 8k + 5 is a prime number.
The integers r1,72, ..., o541 are chosen so that the numbers 0, 71,73, . .. ,r%kﬂ give



pairwise different remainders modulo p. Prove that the product

4 4
H (ri +73)
1<i<j<2k+1

k(k+1)/2

is congruent to (—1) modulo p.

(Two integers are congruent modulo p if p divides their difference.) (Fedor Petrov)

Solution 1. We use the existence of a primitive root g modulo p, that is, such an
integer number that the numbers 1, g, g2,. .., g?~2 give all different non-zero remain-
ders modulo p. Two powers of g, say g™ and ¢*, are congruent modulo p if and only
if m and k are congruent modulo p — 1 (the “if” part follows from Fermat’s little
theorem and the “only if” part from ¢ being primitive root).

There exist exactly 2k+1 non-zero fourth powers modulo p, namely, 1, ¢*, ¢%, ..., ¢%*,

thus the numbers 71, ... ,T%k_H are congruent modulo p to them in some order.

Define the map f(j): {0,1,...,2k} — {0,1,...,2k} as a remainder of 2§ modulo
2k + 1. Note that 8 and 4f(j) are congruent modulo 4(2k + 1) = p — 1, therefore
g% = ¢g*U) (mod p) for all j =0,1,...,2k.

We have
8 8
I[I @f+eh= g =
J i i_ 4=
1<i<j<2k+1 1<i<j<2k+1 Ty =T
8) _ 481 4f(3) _ 44f(0)
g g _ g g
I o= Il g (modn).

0<i<j<2k 0<i<j<2k

We may write g&/() — g4/ () = 4 (g4max(F(5)./(D) _ g4 min(£(5)./(D)) where the sign is
positive if f(j) > f(¢) and negative if f(j) < f(i). Further, when the ordered pair
(i,4) runs over all k(2k + 1) ordered pairs satisfying 0 < ¢ < j < 2k, the ordered pair

(min(f(5), f(i)), max(f(j), f(i))) runs over the same set. Therefore the differences

: FG) _gas @
cancel out and the above product of the ratios [] % equals (—1)V, where

N is the number of pairs ¢ < j for which f(¢) > f(j). This in turn happens when
1=1,2,....k j=k+1,...,k+1i, totally N=1+...+k = k(k+1)/2. Thus the
result. O

Solution 2. Denote t; = r}. Notice that the set T := {t1,...,tap11} consists of
distinct roots of the polynomial 22*+1 — 1 (over the field of residues modulo p). Let
us re-enumerate T so that tx11 = 1, t; = 1/togqo—; for ¢ = 1,2,... k. The map
t — t? is a bijection on T, the inverse map is s — s*T! and we naturally denote
it \/s. For distinct elements ¢,s € T we have t + s = v/st(y/s/t + \/t/s). In the
following formula [] denotes the product over all k(2k 4 1) pairs of distinct elements



t,s € T. We have

[+ =T Vst-T[(Vs/t+ Vt/s) = (Ht)-(f[ltﬂ/ti))%l.

teT

The first multiple equals 1 by Vieta’s formulas for 22**! —1 =[], (z — t). As for
the second multiple, note that there is a polynomial ¥ (x) with integer coefficients
satisfying

1
¢(x+;):xk+xk71+...+1+~-~+937k~

Obviously, the leading coefficient in 1) is 1. The constant term can be accessed by
substituting the complex unit = i; the constant term is

Iy =, 1 ifk=0,1 (mod 4),
¢<O)_w<l+i)_j_z_:klj_{—1 ifk=2,3 (mod4).

The roots of ¢ in the modulo p field are exactly ¢; + 1/t;, i = 1,2,...,k (they are
distinct). The product of the roots is

k

[Tt + 1/t = (~D)* - (0) = {

i=1

1 ifk=0,3 (mod4),
-1 ifk=1,2 (mod4).

Finally, we conclude

1 if k= 4
H(t—i—s)z 1 k=0,3 (mod4), 0
-1 ifk=1,2 (mod4).



