
The 3rd Olympiad of Metropolises

Day 1. Solutions

Problem 1. Solve the system of equations in real numbers:{
(x− 1)(y − 1)(z − 1) = xyz − 1 ,

(x− 2)(y − 2)(z − 2) = xyz − 2 .

(Vladimir Bragin)

Answer: x = 1, y = 1, z = 1.

Solution 1. By expanding the parentheses and reducing common terms we obtain{
− (xy + yz + zx) + (x+ y + z) = 0 ,

− 2(xy + yz + zx) + 4(x+ y + z) = 6 .

From the first equation we can conclude that xy+yz+zx = x+y+z. By substituting
this into the second equation, we obtain that x+ y + z = 3. We now have to solve
the system {

x+ y + z = 3 ,

xy + yz + zx = 3 .
(1)

If we square the first equation, we get x2 + y2 + z2 + 2(xy + yz + zx) = 9. Hence
x2 + y2 + z2 = 3 = xy + yz + zx.

We will prove that if x2 + y2 + z2 = xy + yz + zx, than x = y = z:

x2 + y2 + z2 = xy + yz + zx ⇐⇒
2x2 + 2y2 + 2z2 = 2xy + 2yz + 2zx ⇐⇒

x2 − 2xy + y2 + x2 − 2xz + z2 + y2 − 2yz + z2 = 0 ⇐⇒
(x− y)2 + (x− z)2 + (y − z)2 = 0 .

The sum of three squares is 0, so all of them are zeroes, which implies x = y = z.
That means x = y = z = 1.

Solution 1’. We will show one more way to solve the system (1). Express z = 3−x−y
from first equation and substitute it into the second one:

xy + (y + x)(3− x− y) = 3 ⇐⇒
xy + 3x+ 3y − 2xy − x2 − y2 = 3 ⇐⇒
x2 + y2 + xy − 3x− 3y + 3 = 0 ⇐⇒
x2 + x(y − 3) + y2 − 3y + 3 = 0 .
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Let us solve it as a quadratic equation over variable x:

x =
(3− y)±

√
(y − 3)2 − 4(y2 − 3y + 3)

2
=

=
(3− y)±

√
y2 − 6y + 9− 4y2 + 12y − 12

2
=

=
(3− y)±

√
−3y2 + 6y − 3

2
=

=
(3− y)±

√
−3(y − 1)2

2
.

We can conclude that y = 1, because otherwise the square root wouldn’t exist. It
follows that x = 3−1±0

2 = 1, and then z = 1.

Solution 2. Let’s make variable substitution u = x − 1, v = y − 1, w = z − 1. We
obtain the system {

(u+ 1)(v + 1)(w + 1) = uvw + 1 ,

(u− 1)(v − 1)(w − 1) = uvw − 1 ,

(where the latter equation actually corresponds to the difference between two original
equations).

After expanding all parentheses and reducing common terms we have{
uv + uw + vw + u+ v + w = 0 ,

− (uv + uw + vw) + u+ v + w = 0 .

By taking the sum and the difference of these equations, we obtain uv+uw+vu = 0
and u+ v + w = 0. Finally, observe that

u2 + v2 + w2 = (u+ v + w)2 − 2(uv + uw + vw) = 0− 0 = 0 ,

from which u = v = w = 0 follows, and x = y = z = 1.

Solution 3. Consider the polynomial f(t) = (t− x)(t− y)(t− z) with roots x, y, z.
We can rewrite the system as {

− f(1) = −f(0)− 1 ,

− f(2) = −f(0)− 2 .

Now consider the polynomial g(t) = f(t)− f(0)− t. Its main coefficient is 1, and 0,
1 and 2 are its roots. Hence g(t) = t(t− 1)(t− 2). It follows that

f(t) = g(t) + t+ f(0) = t(t− 1)(t− 2) + t+ f(0) =

= t(t2 − 3t+ 3) + f(0) = t3 − 3t2 + 3t− 1 + f(0) + 1 = (t− 1)3 + f(0) + 1 .
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Observe that (t−1)3+f(0)+1 is an increasing function, which means that different
real numbers cannot be its roots. So x = y = z and also x is also the root of the
derivative of f(t). But f ′(t) = 3(t− 1)2, hence x = y = z = 1.

Problem 2. A convex quadrilateral ABCD is circumscribed about a circle ω. Let
PQ be the diameter of ω perpendicular to AC. Suppose lines BP and DQ intersect
at point X, and lines BQ and DP intersect at point Y . Show that the points X
and Y lie on the line AC. (Géza Kós)

Solution. The role of points P and Q is symmetrical, so without loss of generality
we can assume that P lies inside triangle ACD and Q lies in triangle ABC.

Part 1. Denote the incircles of triangles of ABC and ACD by ω1 and ω2 and denote
their points of tangency on the diagonal AC by X1 and X2, respectively. We will
show that line BP passes through X1, DQ passes through X2 and X1 = X2. Then
it follows that X = X1 = X2 is lying on AC (fig. 1).

A

B

C

D

P

Q

X1 = X2

ω

ω1

ω2

Figure 1: for the solution of the problem 2.

As is well-known, the tangent segments AX1 and AX2 to the incircles can be ex-
pressed in terms of the side lengths as

AX1 =
1

2
(AB +AC −BC) and AX2 =

1

2
(AC +AD − CD) .

Since the quadrilateral ABCD has an incircle, we have AB +CD = BC +AD and
therefore

AX1 −AX2 =
1

2
(AB −BC −AD + CD) = 0 ;

this proves X1 = X2.
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By having the common tangents BA and BC, the circles ω are ω1 are homothetic
with center B. The tangents to ω atX1 and to ω1 at P are parallel, so this homothety
maps P to X1. Hence, the points B, P , X1 are collinear.

Similarly, from the homothety that maps ω to ω2, one can see that D, Q, X2 are
collinear.

Part 2. Now let γ1 and γ2 be the excircles of triangles of ABC and ACD, opposite to
vertices B and D, respectively, and denote their points of tangency on the diagonal
AC by Y1 and Y2, respectively. Analogously to the first part, we will show that line
BQ passes through Y1, DP passes through Y2 and Y1 = Y2 (fig. 2).

A

B
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Y1 = Y2

ωγ1

γ2

Figure 2: for the solution of the problem 2.

The tangent segments CY1 and CY2 to the excircles can be expressed as

CY1 =
1

2
(AB +AC −BC) and CY2 =

1

2
(AC +AD − CD) ;

by AB + CD = BC +AD it follows that CY1 = CY2, so Y1 = Y2.

The circles ω and γ1 are homothetic with center B. The tangents to ω and γ1 at Q
and Y1 are parallel so this homothety maps Q to Y1. Hence, the points B, Q, Y1 are
collinear.

Similarly, from the homothety that maps ω to γ2, one can see that D, P , Y2 are
collinear.

Problem 3. Let k be a positive integer such that p = 8k + 5 is a prime number.
The integers r1, r2, . . . , r2k+1 are chosen so that the numbers 0, r41, r42, . . . , r42k+1 give
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pairwise different remainders modulo p. Prove that the product∏
16i<j62k+1

(
r4i + r4j

)
is congruent to (−1)k(k+1)/2 modulo p.

(Two integers are congruent modulo p if p divides their difference.) (Fedor Petrov)

Solution 1. We use the existence of a primitive root g modulo p, that is, such an
integer number that the numbers 1, g, g2, . . . , gp−2 give all different non-zero remain-
ders modulo p. Two powers of g, say gm and gk, are congruent modulo p if and only
if m and k are congruent modulo p − 1 (the “if” part follows from Fermat’s little
theorem and the “only if” part from g being primitive root).

There exist exactly 2k+1 non-zero fourth powers modulo p, namely, 1, g4, g8, . . . , g8k,
thus the numbers r41, . . . , r42k+1 are congruent modulo p to them in some order.

Define the map f(j) : {0, 1, . . . , 2k} → {0, 1, . . . , 2k} as a remainder of 2j modulo
2k + 1. Note that 8j and 4f(j) are congruent modulo 4(2k + 1) = p − 1, therefore
g8j ≡ g4f(j) (mod p) for all j = 0, 1, . . . , 2k.

We have∏
16i<j62k+1

(r4j + r4i ) =
∏

16i<j62k+1

r8j − r8i
r4j − r4i

≡

≡
∏

06i<j62k

g8j − g8i

g4j − g4i
≡

∏
06i<j62k

g4f(j) − g4f(i)

g4j − g4i
(mod p) .

We may write g4f(j)− g4f(i) = ±(g4max(f(j),f(i))− g4min(f(j),f(i))), where the sign is
positive if f(j) > f(i) and negative if f(j) < f(i). Further, when the ordered pair
(i, j) runs over all k(2k+1) ordered pairs satisfying 0 6 i < j 6 2k, the ordered pair(
min(f(j), f(i)),max(f(j), f(i))

)
runs over the same set. Therefore the differences

cancel out and the above product of the ratios
∏ g4f(j)−g4f(i)

g4j−g4i equals (−1)N , where
N is the number of pairs i < j for which f(i) > f(j). This in turn happens when
i = 1, 2, . . . , k; j = k + 1, . . . , k + i, totally N = 1 + . . .+ k = k(k + 1)/2. Thus the
result.

Solution 2. Denote ti = r4i . Notice that the set T := {t1, . . . , t2k+1} consists of
distinct roots of the polynomial x2k+1 − 1 (over the field of residues modulo p). Let
us re-enumerate T so that tk+1 = 1, ti = 1/t2k+2−i for i = 1, 2, . . . , k. The map
t 7→ t2 is a bijection on T , the inverse map is s 7→ sk+1 and we naturally denote
it
√
s. For distinct elements t, s ∈ T we have t + s =

√
st(
√
s/t +

√
t/s). In the

following formula
∏

denotes the product over all k(2k+1) pairs of distinct elements
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t, s ∈ T . We have

∏
(t+ s) =

∏√
st ·
∏(√

s/t+
√
t/s
)
=

(∏
t∈T

t

)k

·

(
k∏

i=1

(ti + 1/ti)

)2k+1

.

The first multiple equals 1 by Vieta’s formulas for x2k+1 − 1 =
∏

t∈T (x− t). As for
the second multiple, note that there is a polynomial ψ(x) with integer coefficients
satisfying

ψ
(
x+

1

x

)
= xk + xk−1 + . . .+ 1 + . . .+ x−k .

Obviously, the leading coefficient in ψ is 1. The constant term can be accessed by
substituting the complex unit x = i; the constant term is

ψ(0) = ψ
(
i +

1

i

)
=

k∑
j=−k

ij =

{
1 if k ≡ 0, 1 (mod 4) ,

−1 if k ≡ 2, 3 (mod 4) .

The roots of ψ in the modulo p field are exactly ti + 1/ti, i = 1, 2, . . . , k (they are
distinct). The product of the roots is

k∏
i=1

(ti + 1/ti) = (−1)k · ψ(0) =

{
1 if k ≡ 0, 3 (mod 4) ,

−1 if k ≡ 1, 2 (mod 4) .

Finally, we conclude

∏
(t+ s) =

{
1 if k ≡ 0, 3 (mod 4) ,

−1 if k ≡ 1, 2 (mod 4) .
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