
2-я олимпиада Мегаполисов

День 2

Задача 1. Найдите максимальное натуральное число N , для которого из мно-
жества {1, 2, 3, . . . , 100} можно выбрать N различных чисел так, что ни сумма,
ни произведение никаких двух различных выбранных чисел не делятся на 100.

(Mikhail Evdokimov)

Ответ: 45.

Оценка. Разобьем числа на 46 групп: первая группа — это все числа, деля-
щиеся на 10 (10, 20, . . . , 100), а остальные 45 групп — это пары оставшихся
чисел, в сумме дающих 100 (1 и 99, 2 и 98, . . . , 9 и 91, 11 и 89, . . . , 49 и 51).
Из каждой группы можно выбрать не более одного числа, так как чис-
ла в парах в сумме дают 100, а любые два числа из первой группы при
перемножении делятся на 100. Кроме того, нельзя одновременно выбрать
по числу из пар (4, 96) и (25, 75), так как произведение этих двух чисел
будет кратно 100. Таким образом, можно выбрать не более 45 чисел.

Пример. Рассмотрим все числа от 1 до 49, за исключением 20, 25, 30, 40.
Докажем, что этот набор чисел удовлетворяет всем условиям.

Очевидно, что все попарные суммы выбранных чисел не превосходят 97,
а значит, не могут делиться на 100.

Предположим, что произведение каких-то двух чисел кратно 100. Заме-
тим, что никакое из выбранных чисел не кратно 25, а значит, оба мно-
жителя должны делиться на 5. Но все выбранные кратные 5 числа, кро-
ме числа 10, нечетны, а 10 не кратно 4. Тогда произведение любых двух
кратных 5 выбранных чисел не делится на 4 и, следовательно, не делится
на 100. Противоречие.

Задача 2. Натуральные числа x и y, большие 1, таковы, что

[x+ 2, y + 2]− [x+ 1, y + 1] = [x+ 1, y + 1]− [x, y] .

Докажите, что одно из чисел x и y делится на другое.

(Здесь через [a, b] обозначается наименьшее общее кратное чисел a и b.)
(Dušan Djukić)

Если x = y, то (x, y) = x, (x + 1, y + 1) = x + 1, (x + 2, y + 2) = x +
2, поэтому требуемое равенство верно. Теперь без ограничения общности
можем считать, что x < y.

Заметим, что для любых двух натуральных чиселm и n выполнено [m,n] =
cy, где c = m/(m,n) — натуральный делитель a (как обычно, (m,n) обо-
значает наибольший общий делитель m и n). Таким образом, из [x, y] +



[x+ 2, y + 2] = 2[x+ 1, y + 1] получаем

ay + c(y + 2) = 2(y + 1)b , (1)

где

a =
x

(x, y)
, b =

x+ 1

(x+ 1, y + 1)
, c =

x+ 2

(x+ 2, y + 2)
. (2)

В частности,
a | x , b | (x+ 1) , (3)

1 6 a 6 x < y + 1 , 1 6 c 6 x+ 2 6 y + 1 . (4)

Далее из (1) получаем c − a = (2b − a − c)(y + 1), отсюда (y + 1) | (c − a).
Из (4): |c − a| < y + 1, поэтому c − a = 0, a = c. Подставим c = a в (1)
и получим b = a. Но из (3), a | x и a | (x+ 1), поэтому a = b = 1.

Подставив a = 1 в (2), получим x = (x, y), поэтому x | y.

Задача 3. Выпуклый шестиугольник ABCDEF таков, что в него можно впи-
сать окружность и вокруг него можно описать окружность. Пусть ωA, ωB , ωC ,
ωD, ωE и ωF — окружности, вписанные в треугольники FAB, ABC, BCD,
CDE, DEF и EFA соответственно. Обозначим общую внешнюю касательную
к окружностям ωA и ωB , отличную от прямой AB, через `AB . Аналогично опре-
делим прямые `BC , `CD, `DE , `EF и `FA. Пусть A1 — точка пересечения прямых
`AB и `FA; B1 — точка пересечения прямых `BC и `AB ; точки C1, D1, E1 и F1

определяются аналогично.

Известно, что A1B1C1D1E1F1 — выпуклый шестиугольник. Докажите, что его
диагонали A1D1, B1E1 и C1F1 пересекаются в одной точке. (Nairi Sedrakyan)

Решение 1.

Мы докажем, что шестиугольник A1B1C1D1E1F1 центрально симметри-
чен — а значит, его главные диагонали A1D1, B1E1 и C1F1 пересекаются
в центре симметрии.

Обозначим через IA, IB , IC , ID, IE и IF центры окружностей ωA, ωB , ωC ,
ωD, ωE и ωF соответственно.

Утверждение 1. `AB ‖ CF ‖ `DE , `BC ‖ AD ‖ `EF , and `CD ‖ BE ‖ `FA.

Доказательство. Из симметрии, достаточно доказать, что `AB ‖ CF .
Пусть M — середина дуги AB описанной окружности, не содержащей
точек C и F , а m — касательная к этой окружности в точке M (тогда
m ‖ AB, рис. 1). Тогда

∠(FM,CF ) = ∠(m,CM) = ∠(AB,CM) . (5)
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Рис. 1: решение 1 задачи 6.

Хорошо известно, что в треугольнике FAB точка M равноудалена от A,
B и IA; аналогично, MIB = MA = MB. Значит, MIA = MIB , откуда
∠(IAIB , CM) = ∠(FM, IAIB). Поскольку прямые AB и `AB симметричны
относительно IAIB , имеем

∠(AB,CM) = ∠(AB, IAIB) + ∠(IAIB , CM) =

= ∠(IAIB , `AB) + ∠(FM, IAIB) = ∠(FM, `AB) .

Ввиду (5), из этого равенства следует, что ∠(FM,CF ) = ∠(FM, `AB),
то есть CF ‖ `AB .

Утверждение 2. A1B1 + C1D1 + E1F1 = B1C1 +D1E1 + F1A1.

Доказательство. Пусть ωA касается прямых AB, FA, `AB и `FA в точках
TA, UA, VA иWA соответственно. Определим точки TB , . . . ,WF аналогично
(рис. 2). Так как шестиугольник ABCDEF описан, имеем

AB + CD + EF = BC +DE + FA. (6)

Далее,

ATA = AUA, . . . , FTF = FUF и A1VA = A1WA, . . . , F1VF = F1WF ,
(7)

поскольку это пары отрезков кавательных к окружностям ωA, . . . , ωF .

Наконец, из симметрии относительно IAIB , . . . , IF IA, мы получаем, что

TAUB = VAWB , . . . , TFUA = VFWA. (8)
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Рис. 2: решение 1 задачи 6.

Из равенств (7) и (8) получаем, что

A1B1 = VAWB −A1VA −B1WB = TAUB −A1VA −B1WB =

= (AB −ATA −BUB)−A1VA −B1WB =

= AB −ATA −BTB −A1VA −B1VB .

Аналогично,

B1C1 = BC −BTB − CTC −B1VB − C1VC ,

. . .

F1A1 = FA− FTF −ATA − F1VF −A1VA .

Подставляя эти формулы в (6) и сокращая одинаковые члены, получаем
требуемое равенство.
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Рис. 3: решение 1 задачи 6.

Доказательство. Выберем точки X, Y и Z так, что F1A1B1X, B1C1D1Y
и D1E1F1Z — параллелограммы (рис. 3). Из утверждения 1 получем, что
F1X ‖ A1B1 ‖ E1D1 ‖ F1Z, то есть точки F1, X, Z лежат на одной прямой.
Аналогично, точки B1, X, Y лежат на одной прямой, равно как и точки
D1, Y , Z. Мы докажем, что точки X, Y , Z совпадают.

Если точки X, Y , Z не совпадают, то они образуют треугольник. Пред-
положим, что этот треугольник XY Z имеет ту же ориентацию, что и ше-
стиугольник A1B1C1D1E1F1. Тогда

F1A1 +B1C1 +D1E1 = XB1 + Y D1 + ZF1 >

> Y B1 + ZD1 +XF1 = C1D1 + E1F1 +A1B1 ,

что противоречит утверждению 2.

Если ориентация треугольника XY Z противоположна ориентации шести-
угольника, то аналогично получается неравенство F1A1 +B1C1 +D1E1 <
C1D1 + E1F1 +A1B1, которое также невозможно.

Утверждение 3 показывает, что шестиугольник A1B1C1D1E1F1 действи-
тельно центрально симметричен, что и требовалось.

Решение 2.

Покажем, как после доказательства утверждения 1 можно завершить ре-
шение по-другому. Пусть I — центр окружности, вписанной в ABCDEF .

Утверждение 4. IIA · IA = IIB · IB = IIC · IC = IID · ID = IIE · IE =
IIF · IF .

Доказательство. Опять обозначим через M середину дуги AB описан-
ной окружности, не содержащей точку C. Как уже отмечалось в дока-
зательстве утверждения 1, точки A, B, IA и IB лежат на окружности
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Рис. 4: решение 2 задачи 6.

с центром M (рис. 4). Поскольку AIA и BIB — биссектрисы углов FAB
и ABC, они пересекаются в I. Значит, IIA · IA = IIB · IB есть просто сте-
пень точки I относительно упомянутой окружности. Остальные равенства
доказываются аналогично.

Утверждение 4 показывает, что инверсия f с центром I и радиусом ρ =√
IIA · IA переводит точки A, . . . , F в точки IA, . . . , IF соответственно.

Значит, шестиугольник IAIBICIDIEIF вписан.

Известно, что главные диагонали вписанного выпуклого шестиугольни-
ка X1X2X3X4X5X6 пересекаются в одной точке тогда и только тогда, ко-
гда X1X2 ·X3X4 ·X5X6 = X4X5 ·X6X1 ·X2X3 (это следует из тригономет-
рической теоремы Чевы для треугольника X1X3X5). Поэтому, поскольку
шестиугольник ABCDEF одновременно вписан и описан, из теоремы Бри-
аншона получаем, что его диагонали пересекаются в одной точке и что

AB · CD · EF = BC ·DE · FA . (9)

С другой стороны, из инверсии f получаем, что

AB = IAIB ·
IA · IB
ρ2

, . . . , FA = IF IA ·
IF · IA
ρ2

.

Подставляя эти равенства в (9), получаем

IAIB · ICID · IEIF = IBIC · IDIE · IF IA .

Это равенство, в свою очередь, означает, что диагонали IAID, IBIE и ICIF
пересекаются в одной точке.

Утверждение 5. Прямая IAID является биссектрисой углов F1A1B1 и
C1D1E1. Аналогично, прямые IBIE и ICIF являются биссектрисами уг-
лов A1B1C1, D1E1F1, B1C1D1 и E1F1A1.
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Рис. 5: решение 2 задачи 6.

Доказательство. ПустьNA иND — вторые точки пересечения биссектрис
углов ∠FAB и ∠CDE соответственно с описанной окружностью шести-
угольника ABCDEF (рис. 5). Заметим, что

∠(NAND, BE) =
1

2
(N̆DE + N̆AB) =

=
1

2
(C̆ND + F̆NA) = ∠(CF,NAND) .

Это значит, что прямая NAND параллельна биссектрисе угла между BE
и CF (содержащего точку A). По утверждению 1, NAND также парал-
лельна биссектрисам углов F1A1B1 и C1D1E1.

Поскольку точки A, D, NA и ND лежат на одной окружности, прямые
NAND антипараллельны относительно угла AID. С другой стороны, со-
гласно утверждению 4, точки A, D, IA и ID лежат на одной окружности
(или на одной прямой), то есть прямые AD и IAID также антипарал-
лельны относительно этого угла. Из этих двух наблюдений следует, что
NAND ‖ IAID.

Итак, биссектрисы углов F1A1B1 и C1D1E1 параллельны IAID и проходят
соответственно через IA и ID. Отсюда и следует наше утверждение.

Ввиду обсуждения выше, утверждение 5 влечет, что диагонали IAA1D1ID,
IBB1E1IE и ICC1F1IF пересекаются в одной точке и являются биссек-
трисами углов шестиугольника A1B1C1D1E1F1 (рис. 6). Это также имеет
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Рис. 6: решение 2 задачи 6.

другое интересное следствие: шестиугольник A1B1C1D1E1F1 описан около
окружности с центром в точке пересечения его диагоналей.

Решение 3.

Используя утверждение 4 из предыдущего решения, докажем более общее
утверждение:

Теорема. На плоскости фиксированы две окружности Ω и ω, причем ω
лежит внутри Ω. Рассмотрим произвольную ломаную ABCD, вписанную
в Ω, звенья AB, BC, CD которой касаются ω. Пусть IB , IC — центры
окружностей, вписанных в треугольники ABC и BCD соответственно.
Пусть ` — прямая, симметричная прямой BC относительно IBIC . Тогда
` касается фиксированной окружности, не зависящей от выбора ломаной
ABCD.

Лемма. На плоскости фиксированы две окружности Ω с центром O и ω
с центром I, причем ω лежит внутри Ω. Рассмотрим произвольную хор-
ду BC окружности Ω, касающуюся ω. Тогда центр X описанной окружно-
сти треугольника BIC лежит на фиксированной окружности Γ с центром
в O, не зависящей от выбора хорды BC.

Доказательство леммы. Пусть K и L — проекции точки I на прямые BC
и OX соответственно, M — середина BC (рис. 7). Очевидно, что M ∈ OX
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Рис. 7: решение 3 задачи 6.

и что MKIL — прямоугольник. Заметим, что

OB2 −OI2 = (OB2 −XB2)− (XI2 −OI2) =

= (OM2 −XM2)− (XL2 −OL2) =

= (OM +XM)(OM −XM)− (XL+OL)(XL−OL) =

= 2OX · LM = 2OX · IK.

Длины отрезков OB, OI, IK не зависят от положения хорды BC. Значит,
длина отрезка OX тоже от нее не зависит.

Доказательство теоремы. Обозначения X и Γ из формулировки леммы
далее сохранены. Пусть f — инверсия с центром в точке I, переводящая
B в IB и C в IC (из следствия из утверждения 4 ясно, что такая инверсия
существует и что она не зависит от выбора ломаной ABCD). Обозначим
за γ образ Γ под действием f . Пусть G — центр γ, а T — точка касания BC
с ω (рис. 8). Известно, что при инверсии f центр X описанной окружности
треугольника BIC переходит в точку Y , симметричную I относительно
IBIC . Докажем, что G равноудалена от всевозможных прямых `.

Для начала покажем, что GY ⊥ `. Действительно: OX ⊥ BC как се-
рединный перпендикуляр; IX ⊥ IBIC , так как BC и IBIC антипарел-
лельны относительно угла BIC, IX симметрична IT относительно бис-
сектрисы угла BIC и IT ⊥ BC. Из OX ⊥ BC и IX ⊥ IBIC следует, что
∠(OX, IX) = ∠(BC, IBIC). Инверсные окружности Γ и γ также гомоте-
тичны с центром в I, а значит ∠(OX, IX) = ∠(IY,GY ). Из симметрии
относительно IBIC выполнено ∠(BC, IBIC) = ∠(IBIC , `). Получили, что
∠(IY,GY ) = (IBIC , `). Но IY ⊥ IB1IC1, и тогда GY ⊥ `.
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Рис. 8: решение 3 задачи 6.

Пусть точка T ′ симметрична T относительно IBIC . Отрезки IT и Y T ′

симметричны относительно IBIC , прямые BC и ` — тоже. Значит, Y T ′ ⊥
`. То есть G лежит на прямой Y T ′. Таким образом, (ориентированное)
расстояние от G до ` равно GY − Y T ′ = GY − IT = R(γ)−R(ω). (R(s) —
обозначение для радиуса окружности s).

Из доказаной теоремы легко следует утверждение задачи. Действительно,
все прямые `AB , `BC , `CD, `DE , `EF , `FA касаются одной окружности, что
свидетельствует об описанности шестиугольника A1B1C1D1E1F1. По тео-
реме Брианшона его диагонали пересекаются в одной точке.
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