2nd Olympiad of Metropolises

Day 2

Problem 1. Find the largest positive integer IV for which one can choose N distinct
numbers from the set {1,2,3,...,100} such that neither the sum nor the product of
any two different chosen numbers is divisible by 100. (Mikhail Evdokimov)

Answer: 45.

Ezxample. Let us choose all numbers from 1 to 49 except 20, 25, 30, and 40.
The sum of any two chosen numbers does not exceed 97, and thus cannot
be a multiple of 100. Moreover, since none of these numbers is a multiple
of 25 and the only multiple of 10 is 10 itself, the product of any two chosen
numbers cannot be a multiple of 100. Therefore this set of numbers satisfies
the condition.

Estimate. Consider the following 46 groups of numbers. The first group con-

tains all multiples of 10 (i.e. 10, 20, ..., 100), whereas the other 45 groups
consist of the pairs of the remaining numbers summing up to 100 (i.e. 1 and
99, 2 and 98, ..., 9 and 91, 11 and 89, ..., 49 and 51). Since the product

of any two numbers from the first group is divisible by 100 and the sum of
the two numbers in each pair is 100, we can choose at most one number from
each group. Moreover, we must not choose numbers from both pairs (4, 96)
and (25, 75), because the product of these two numbers would be a multiple
of 100. Hence, we can choose at most 45 numbers. O]

Problem 2. Let x and y be positive integers greater than 1 such that
Z+2y+2] -+ Ly+1]=[z+Ly+1] [z

Prove that one of the two numbers x and y divides the other.

(Here [a, b] denotes the least common multiple of a and b.) (Dusan Djukic)

The case z = y is trivial. Assume without loss of generality that =z < y.

Note that for any positive integers m and n it holds that [m,n] = ¢n, where
¢ =m/(m,n) is a positive divisor of m (as usual, (m,n) denotes the greatest
common divisor of m and n). Therefore, [z,y] + [z + 2,y + 2] = 2[x + 1,y + 1]

implies
ay+c(y+2)=2(y+1)b, (1)
where 1 5
o= p= _z+t . c= _r+s: 2)
(z,y) (x+1,y+1) (z+2,y+2)

In particular,
alz, b|(x+1), (3)



1<a<z<y+1l, 1<c<z+2<y+1. (4)

It follows from (1) that c—a = (2b—a—c¢)(y+1),s0 (y+1) | (c—a). But (4)
implies [c —a| <y+ 1,80 ¢c—a=0,1i.e., a=c Now (1) also gives us b = a,
and from (3) we deduce that a | z and a | (x 4+ 1), so a = 1. Finally, now (2)
yields z = (x,y), and hence z | y. O

Problem 3. Let ABCDEF be a convex hexagon which has an inscribed circle and
a circumscribed circle. Denote by wa, wg, we, wp, wg, and wg the inscribed circles
of the triangles FAB, ABC, BCD, CDE, DEF, and EF A, respectively. Let £4p
be the external common tangent of w4 and wp other than the line AB; lines {5,
Lep, o, Ler, and £r4 are analogously defined. Let A; be the intersection point
of the lines fr4 and £4p; Bi be the intersection point of the lines £45 and /pc;
points C1, D1, E1, and F} are analogously defined.

Suppose that A; B1C; D, E1F; is a convex hexagon. Show that its diagonals A; Dy,
By Eq, and C1F; meet at a single point. (Nairi Sedrakyan)
Solution 1.

We will prove that the hexagon A;ByCiD,E;F} is centrally symmetric and
therefore the main diagonals A; Dy, B1F; and Cy F; pass through the symme-
try center of the hexagon.

We denote the centers of wa, wg, we, wp, wg, and wr by 14, I, Ic, Ip, Ig,
and I, respectively.

Claim 1. EAB H CF H EDE, éBC’ H AD || éEF, and éCD || BE H gFA-

Figure 1: solution 1 of problem 6.

Proof. By the symmetry it suffices to prove that £4p || CF. Let M be the
midpoint of the arc AB of the circumcircle not containing C' and F, and let



m be the tangent to the circumcircle at M, which is parallel to AB (Fig. 1).
Then we have

Z/(FM,CF) = Z(m,CM) = Z(AB,CM). (5)

It is well known that the incenter I4 of the triangle F'AB satisfies M1, =
MA = MB; similarly, MIg = MA = MB, so MIy, = MIg and therefore
L(Ialp,CM) = L(FM,I5Ip). The lines AB and {4p are symmetric about
the line I41g, so
L(AB,CM) = L(AB,Ialp) + £(Ialp,CM)
=L(Ialp,lap)+ L(FM,Islg) = L(FM,laR).

This equation combined with (5) yields Z(FM,CF) = Z(FM,l4p), so indeed
CF || Lap. O

Claim 2. AlBl + ClDl + E1F1 = BlCl + D1E1 + F1A1.

Proof. Let Ty, Ua, V4, and W4 be the points where w4 touches the lines AB,
FA, lyp, and £p 4, respectively, and define the points Tz, ..., Wg analogously
(Fig. 2). Since the hexagon ABCDEF is tangential, we have

AB+CD+ EF =BC+ DE + FA. (6)
Furthermore we have

ATA :AUA, ey FTF :FUF and A1VA :A1WA, ey F1VF :F1WF,
(7)

because these pairs of segments are tangents drawn to the circles wy, ..., wpg.
Finally, from the symmetry about the lines I41p,...,[rl4, we can see that
TAUB = VAWB, ey TFUA = VFWA. (8)

By combining (7) and (8),

AyBy = VaWp — A\Vy — BiWp = TaUp — A1Va — BiWp
= (AB — ATA — BUgp) — A\Va — BiWg
= AB — ATA — BT — A1V — B1 V.

Analogously,
B,Cy =BC—-BIg—CTc— B,V —Ci V¢,

LA =FA—-FTp — ATy — WV — A1V, .

Now the Claim can be achieved by plugging these formulas into (6) and can-
celling identical terms. O



Figure 2: solution 1 of problem 6.
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Figure 3: solution 1 of problem 6.

Claim 3. AlBl = E1D1> 3101 = FlEla and ClDl = A1F1~

Proof. Let X,Y, and Z be those points for which the quadrilaterals Fy A1 B, X,



B1C1D1Y, and D1E F1Z are parallelograms (Fig. 3). By Claim 1 we have
FiX || AiB; || E1D; || FAZ, so the points Fy, X, Z are collinear; it can be
seen similarly that By, X, Y are collinear and D1, Y, Z are also collinear. We
will show that the points X, Y, Z coincide.

The points X, Y, Z either coincide or form a triangle. Suppose that XY Z is
a triangle with the same orientation as the hexagon A; B1C1 D, E 1 F;. Then

NA+BCi+DEy=XB1+YD+ZF
>YB1+ZD1+XF, =CDy+ E{F, + A1 By s
contradicting Claim 2.

If XY Z is a triangle with the opposite orientation from the hexagon, we get
a contradiction in the same way, for then we have Fy1 Ay + B1Cy + D1E; <
CiD1+ B Fy 4+ A By, O

Claim 3 shows that the hexagon Ay B1Cy D1 F1 F) is indeed centrally symmetric,
as required. O
Solution 2.

We present an alternative finishing of the solution after Claim 1. We denote
by I the incenter of the hexagon ABCDEF'.

Claim 4. II4-IA=1lg-IB=1lc-1C=1Ip-ID=1lg-IE=1Ip-IF.

Figure 4: solution 2 of problem 6.

Proof. Again, let M be the midpoint of the arc AB of the circumcircle not
containing C. As was already mentioned in the proof of Claim 1, the points A,
B, I4, and Ip lie on a circle centered at M (Fig. 4). Since AI4 and Blp
are bisectors of the angles FAB and ABC, they meet at I. Thus I, -[A =



IIg - IB is the power of I with respect to the circle mentioned above. The
other equalities can be proved in a similar way. O

Claim 4 implies that the inversion f with center I and radius p = /114 -ITA
maps the points A, ..., F to I4,...,Ir, respectively. Therefore, the hexagon
IAfglchIEIF is CyCliC.

It is well-known that the main diagonals of a cyclic hexagon X7 X5 X3X4X5X¢g
are concurrent if and only if X1 X5 - X3X,-X5X = X4 X5-X6X1-X2 X3 (this fact
follows from the trigonometric form of Ceva’s theorem for triangle X; X3X5).
Thus, since ABC DEF' is both cyclic and tangential, by the Brianchon theorem
we obtain

AB-CD-FEF =BC-DE-FA. (9)
On the other hand, by means of the inversion f we obtain
IA-IB IF-TA
AB =141p - 5 -, FPA=1Iply- -
P p

Plugging this into (9) we obtain that
Ialg - Iclp - Iglp = Iglc - Iplg - Iply .
which in turn means that the diagonals IoIp, Iglg, and I¢Ip are concurrent.

Claim 5. Line I4Ip is the angle bisector of the angles F1 A; B and C1 D Ey;
similarly, lines Iglg and IoIp bisect the angles A1 B1Cy, D1F1Fy, B1C1Dq,
and E1F1A1.

Proof. Let the angle bisectors of /ZFAB and ZCDE meet the circumcircle
of ABCDEF again at N4 and Np, respectively (Fig. 5); notice that

1 —— —
Z(NAND,BE) = NDE+NAB) =

5
1 —
= E(CND JrFNA) = Z(CF,NAND).

Thus N4oNp is parallel to the bisector of the angle between BE and CF
(containing A). By Claim 1, NoNp is also parallel to the bisectors of an-
gles FlAlBl and ClDlEl.

Since the points A, D, N4, and Np are concyclic, lines NoNp and AD are
anti-parallel with respect to angle AID. On the other hand, by Claim 4 the
points A, D, I4, and Ip are concyclic or collinear, which means that lines AD
and I 4Ip are antiparallel with respect to the same angle. The two observations
yield NaNp || Ialp.

Thus, the two angle bisectors are parallel to [ 4Ip and pass through 74 and Ip,
respectively. This proves the first part of the Claim; the proofs of the other
parts are similar. O



Figure 5: solution 2 of problem 6.
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Figure 6: solution 2 of problem 6.

Claim 5, along with the above discussion, shows that the diagonals [4A; D11p,
IgB1F11g, and IoC1 F I are concurrent and bisect the angles of the hexagon
A1B,C1D1E 1 Fy (Fig. 6). This shows another interesting fact: namely, this



hexagon is tangential and the diagonals connecting opposite points pass through
its incenter. O

Solution 3.

Using Claim 4 from the previous solution, we shall prove a more general state-
ment:

Theorem. Two circles € and w are given in the plane such that w lies inside
Q. Consider an arbitrary broken line ABCD inscribed in {2 whose segments
AB, BC and CD are tangent to w. Let Ip and I be the incenters of the
triangles ABC and BCD, respectively. Let ¢ be the line symmetric to the
line BC about the line Iglx. Then £ touches a fixed circle independent of the
choice of the broken line ABCD.

Lemma. Let Q) and w be two circles with centers at O and I, respectively,
such that w lies inside 2. Consider an arbitrary chord BC' of the circle 2
tangent to w. Then the circumcenter X of the triangle BIC lies on a fixed
circle I" centered at O, independent of the choice of BC.
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Figure 7: problem 6, third solution.

Proof of the lemma. Let K and L be the projections of I on the lines BC'
and OX, respectively, and let M be the midpoint of BC' (Fig. 7). Obviously,
M € OX and MKIL is a rectangle. We have

OB? —0OI* = (OB? - XB?) — (XI* - OI?)

= (OM? - XM?) — (XL? - 0OL?)

= (OM + XM)(OM — XM) — (XL + OL)(XL — OL)
=20X-LM = 20X - IK.



The lengths of segments OB, OI and I K do not depend on the chord BC, so
neither does the length of OX. O
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Figure 8: solution 3 of problem 6.

Proof of the theorem. Point X and circle I" are defined as above. Consider the
inversion f centered at I that maps Iz and Ic to B and C, respectively. (Its
existence and independence from the broken line follows from the corollary of
Claim 4).

Denote v = f(T'). Let G be the center of v and let T' be the tangency point of
w and BC (Fig. 8). It is well-known that f maps the circumcenter X of the
triangle BIC to the point Y symmetric to I about the line Iglo. We shall
prove that the distance from G to the variable line ¢ is constant.

We show first that GY L ¢. Points B and C' are symmetric about OX, so
OX 1 BC. Also, since IT 1 BC, the lines IX and IT are symmetric about
the bisector of angle BIC, and the lines BC' and Igls are anti-parallel with
respect to the angle BIC, we have IX | Iglz. Now from OX 1 BC and
IX 1 Iglc we deduce that Z(OX,1X) = Z(BC,Iglc). By properties of
inversion one can obtain Z(OX,IX) = Z(IY,GY) (homothety of v and T is
useful here). By the symmetry in Iglc we have Z(BC, Iglc) = Z(Iglc, ).
Thus Z(IY,GY) = (Iglc, ), so IY L IBIC, implies that GY L £.

Let T" be the reflection of T'in Iglc. The segments IT and YT” are symmetric
about the line Ig I and so are the lines BC and £. Since YT L ¢ it follows that
G lies on YT". Finally, the distance between G and £ is equal to GY — YT’ =



GY — IT = R(y) — R(w), which is constant. (Here R(s) denotes the radius of
a circle s.) n

The problem statement easily follows from this theorem. Observe that all lines
lag, e, LoD, UpE, UEF, £ra are tangent to the same circle, which implies
that the hexagon Ay B1Cy D E1F; is tangential. By the Brianchon theorem its
diagonals are concurrent. O
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