
2nd Olympiad of Metropolises

Day 2

Problem 1. Find the largest positive integer N for which one can choose N distinct
numbers from the set {1, 2, 3, . . . , 100} such that neither the sum nor the product of
any two different chosen numbers is divisible by 100. (Mikhail Evdokimov)

Answer: 45.

Example. Let us choose all numbers from 1 to 49 except 20, 25, 30, and 40.
The sum of any two chosen numbers does not exceed 97, and thus cannot
be a multiple of 100. Moreover, since none of these numbers is a multiple
of 25 and the only multiple of 10 is 10 itself, the product of any two chosen
numbers cannot be a multiple of 100. Therefore this set of numbers satisfies
the condition.

Estimate. Consider the following 46 groups of numbers. The first group con-
tains all multiples of 10 (i. e. 10, 20, . . . , 100), whereas the other 45 groups
consist of the pairs of the remaining numbers summing up to 100 (i. e. 1 and
99, 2 and 98, . . . , 9 and 91, 11 and 89, . . . , 49 and 51). Since the product
of any two numbers from the first group is divisible by 100 and the sum of
the two numbers in each pair is 100, we can choose at most one number from
each group. Moreover, we must not choose numbers from both pairs (4, 96)
and (25, 75), because the product of these two numbers would be a multiple
of 100. Hence, we can choose at most 45 numbers.

Problem 2. Let x and y be positive integers greater than 1 such that

[x+ 2, y + 2]− [x+ 1, y + 1] = [x+ 1, y + 1]− [x, y] .

Prove that one of the two numbers x and y divides the other.

(Here [a, b] denotes the least common multiple of a and b.) (Dušan Djukić)

The case x = y is trivial. Assume without loss of generality that x < y.

Note that for any positive integers m and n it holds that [m,n] = cn, where
c = m/(m,n) is a positive divisor of m (as usual, (m,n) denotes the greatest
common divisor of m and n). Therefore, [x, y] + [x+ 2, y+ 2] = 2[x+ 1, y+ 1]
implies

ay + c(y + 2) = 2(y + 1)b , (1)

where
a =

x

(x, y)
, b =

x+ 1

(x+ 1, y + 1)
, c =

x+ 2

(x+ 2, y + 2)
. (2)

In particular,
a | x , b | (x+ 1) , (3)



1 ≤ a ≤ x < y + 1 , 1 ≤ c ≤ x+ 2 ≤ y + 1 . (4)

It follows from (1) that c− a = (2b− a− c)(y+ 1), so (y+ 1) | (c− a). But (4)
implies |c− a| < y + 1, so c− a = 0, i. e., a = c. Now (1) also gives us b = a,
and from (3) we deduce that a | x and a | (x + 1), so a = 1. Finally, now (2)
yields x = (x, y), and hence x | y.

Problem 3. Let ABCDEF be a convex hexagon which has an inscribed circle and
a circumscribed circle. Denote by ωA, ωB , ωC , ωD, ωE , and ωF the inscribed circles
of the triangles FAB, ABC, BCD, CDE, DEF , and EFA, respectively. Let `AB

be the external common tangent of ωA and ωB other than the line AB; lines `BC ,
`CD, `DE , `EF , and `FA are analogously defined. Let A1 be the intersection point
of the lines `FA and `AB ; B1 be the intersection point of the lines `AB and `BC ;
points C1, D1, E1, and F1 are analogously defined.

Suppose that A1B1C1D1E1F1 is a convex hexagon. Show that its diagonals A1D1,
B1E1, and C1F1 meet at a single point. (Nairi Sedrakyan)

Solution 1.

We will prove that the hexagon A1B1C1D1E1F1 is centrally symmetric and
therefore the main diagonals A1D1, B1E1 and C1F1 pass through the symme-
try center of the hexagon.

We denote the centers of ωA, ωB , ωC , ωD, ωE , and ωF by IA, IB , IC , ID, IE ,
and IF , respectively.

Claim 1. `AB ‖ CF ‖ `DE , `BC ‖ AD ‖ `EF , and `CD ‖ BE ‖ `FA.
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Figure 1: solution 1 of problem 6.

Proof. By the symmetry it suffices to prove that `AB ‖ CF . Let M be the
midpoint of the arc AB of the circumcircle not containing C and F , and let



m be the tangent to the circumcircle at M , which is parallel to AB (Fig. 1).
Then we have

∠(FM,CF ) = ∠(m,CM) = ∠(AB,CM) . (5)

It is well known that the incenter IA of the triangle FAB satisfies MIA =
MA = MB; similarly, MIB = MA = MB, so MIA = MIB and therefore
∠(IAIB , CM) = ∠(FM, IAIB). The lines AB and `AB are symmetric about
the line IAIB , so

∠(AB,CM) = ∠(AB, IAIB) + ∠(IAIB , CM)

= ∠(IAIB , `AB) + ∠(FM, IAIB) = ∠(FM, `AB) .

This equation combined with (5) yields ∠(FM,CF ) = ∠(FM, `AB), so indeed
CF ‖ `AB .

Claim 2. A1B1 + C1D1 + E1F1 = B1C1 +D1E1 + F1A1.

Proof. Let TA, UA, VA, and WA be the points where ωA touches the lines AB,
FA, `AB , and `FA, respectively, and define the points TB , . . . ,WF analogously
(Fig. 2). Since the hexagon ABCDEF is tangential, we have

AB + CD + EF = BC +DE + FA. (6)

Furthermore we have

ATA = AUA, . . . , FTF = FUF and A1VA = A1WA, . . . , F1VF = F1WF ,
(7)

because these pairs of segments are tangents drawn to the circles ωA, . . . , ωF .

Finally, from the symmetry about the lines IAIB , . . . , IF IA, we can see that

TAUB = VAWB , . . . , TFUA = VFWA. (8)

By combining (7) and (8),

A1B1 = VAWB −A1VA −B1WB = TAUB −A1VA −B1WB

= (AB −ATA −BUB)−A1VA −B1WB

= AB −ATA −BTB −A1VA −B1VB .

Analogously,

B1C1 = BC −BTB − CTC −B1VB − C1VC ,

. . .

F1A1 = FA− FTF −ATA − F1VF −A1VA .

Now the Claim can be achieved by plugging these formulas into (6) and can-
celling identical terms.
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Figure 2: solution 1 of problem 6.
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Figure 3: solution 1 of problem 6.

Claim 3.
−−−→
A1B1 =

−−−→
E1D1,

−−−→
B1C1 =

−−−→
F1E1, and

−−−→
C1D1 =

−−−→
A1F1.

Proof. LetX, Y , and Z be those points for which the quadrilaterals F1A1B1X,



B1C1D1Y , and D1E1F1Z are parallelograms (Fig. 3). By Claim 1 we have
F1X ‖ A1B1 ‖ E1D1 ‖ F1Z, so the points F1, X, Z are collinear; it can be
seen similarly that B1, X, Y are collinear and D1, Y , Z are also collinear. We
will show that the points X, Y , Z coincide.

The points X, Y , Z either coincide or form a triangle. Suppose that XY Z is
a triangle with the same orientation as the hexagon A1B1C1D1E1F1. Then

F1A1 +B1C1 +D1E1 = XB1 + Y D1 + ZF1

> Y B1 + ZD1 +XF1 = C1D1 + E1F1 +A1B1 ,

contradicting Claim 2.

If XY Z is a triangle with the opposite orientation from the hexagon, we get
a contradiction in the same way, for then we have F1A1 + B1C1 + D1E1 <
C1D1 + E1F1 +A1B1,

Claim 3 shows that the hexagon A1B1C1D1E1F1 is indeed centrally symmetric,
as required.

Solution 2.

We present an alternative finishing of the solution after Claim 1. We denote
by I the incenter of the hexagon ABCDEF .

Claim 4. IIA · IA = IIB · IB = IIC · IC = IID · ID = IIE · IE = IIF · IF .
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Figure 4: solution 2 of problem 6.

Proof. Again, let M be the midpoint of the arc AB of the circumcircle not
containing C. As was already mentioned in the proof of Claim 1, the points A,
B, IA, and IB lie on a circle centered at M (Fig. 4). Since AIA and BIB
are bisectors of the angles FAB and ABC, they meet at I. Thus IIA · IA =



IIB · IB is the power of I with respect to the circle mentioned above. The
other equalities can be proved in a similar way.

Claim 4 implies that the inversion f with center I and radius ρ =
√
IIA · IA

maps the points A, . . . , F to IA, . . . , IF , respectively. Therefore, the hexagon
IAIBICIDIEIF is cyclic.

It is well-known that the main diagonals of a cyclic hexagon X1X2X3X4X5X6

are concurrent if and only ifX1X2·X3X4·X5X6 = X4X5·X6X1·X2X3 (this fact
follows from the trigonometric form of Ceva’s theorem for triangle X1X3X5).
Thus, since ABCDEF is both cyclic and tangential, by the Brianchon theorem
we obtain

AB · CD · EF = BC ·DE · FA. (9)

On the other hand, by means of the inversion f we obtain

AB = IAIB ·
IA · IB
ρ2

, . . . , FA = IF IA ·
IF · IA
ρ2

.

Plugging this into (9) we obtain that

IAIB · ICID · IEIF = IBIC · IDIE · IF IA .

which in turn means that the diagonals IAID, IBIE , and ICIF are concurrent.

Claim 5. Line IAID is the angle bisector of the angles F1A1B1 and C1D1E1;
similarly, lines IBIE and ICIF bisect the angles A1B1C1, D1E1F1, B1C1D1,
and E1F1A1.

Proof. Let the angle bisectors of ∠FAB and ∠CDE meet the circumcircle
of ABCDEF again at NA and ND, respectively (Fig. 5); notice that

∠(NAND, BE) =
1

2
(N̆DE + N̆AB) =

=
1

2
(C̆ND + F̆NA) = ∠(CF,NAND) .

Thus NAND is parallel to the bisector of the angle between BE and CF
(containing A). By Claim 1, NAND is also parallel to the bisectors of an-
gles F1A1B1 and C1D1E1.

Since the points A, D, NA, and ND are concyclic, lines NAND and AD are
anti-parallel with respect to angle AID. On the other hand, by Claim 4 the
points A, D, IA, and ID are concyclic or collinear, which means that lines AD
and IAID are antiparallel with respect to the same angle. The two observations
yield NAND ‖ IAID.

Thus, the two angle bisectors are parallel to IAID and pass through IA and ID,
respectively. This proves the first part of the Claim; the proofs of the other
parts are similar.
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Figure 5: solution 2 of problem 6.
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Figure 6: solution 2 of problem 6.

Claim 5, along with the above discussion, shows that the diagonals IAA1D1ID,
IBB1E1IE , and ICC1F1IF are concurrent and bisect the angles of the hexagon
A1B1C1D1E1F1 (Fig. 6). This shows another interesting fact: namely, this



hexagon is tangential and the diagonals connecting opposite points pass through
its incenter.

Solution 3.

Using Claim 4 from the previous solution, we shall prove a more general state-
ment:

Theorem. Two circles Ω and ω are given in the plane such that ω lies inside
Ω. Consider an arbitrary broken line ABCD inscribed in Ω whose segments
AB, BC and CD are tangent to ω. Let IB and IC be the incenters of the
triangles ABC and BCD, respectively. Let ` be the line symmetric to the
line BC about the line IBIC . Then ` touches a fixed circle independent of the
choice of the broken line ABCD.

Lemma. Let Ω and ω be two circles with centers at O and I, respectively,
such that ω lies inside Ω. Consider an arbitrary chord BC of the circle Ω
tangent to ω. Then the circumcenter X of the triangle BIC lies on a fixed
circle Γ centered at O, independent of the choice of BC.
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Figure 7: problem 6, third solution.

Proof of the lemma. Let K and L be the projections of I on the lines BC
and OX, respectively, and let M be the midpoint of BC (Fig. 7). Obviously,
M ∈ OX and MKIL is a rectangle. We have

OB2 −OI2 = (OB2 −XB2)− (XI2 −OI2)

= (OM2 −XM2)− (XL2 −OL2)

= (OM +XM)(OM −XM)− (XL+OL)(XL−OL)

= 2OX · LM = 2OX · IK.



The lengths of segments OB, OI and IK do not depend on the chord BC, so
neither does the length of OX.
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Figure 8: solution 3 of problem 6.

Proof of the theorem. Point X and circle Γ are defined as above. Consider the
inversion f centered at I that maps IB and IC to B and C, respectively. (Its
existence and independence from the broken line follows from the corollary of
Claim 4).

Denote γ = f(Γ). Let G be the center of γ and let T be the tangency point of
ω and BC (Fig. 8). It is well-known that f maps the circumcenter X of the
triangle BIC to the point Y symmetric to I about the line IBIC . We shall
prove that the distance from G to the variable line ` is constant.

We show first that GY ⊥ `. Points B and C are symmetric about OX, so
OX ⊥ BC. Also, since IT ⊥ BC, the lines IX and IT are symmetric about
the bisector of angle BIC, and the lines BC and IBIC are anti-parallel with
respect to the angle BIC, we have IX ⊥ IBIC . Now from OX ⊥ BC and
IX ⊥ IBIC we deduce that ∠(OX, IX) = ∠(BC, IBIC). By properties of
inversion one can obtain ∠(OX, IX) = ∠(IY,GY ) (homothety of γ and Γ is
useful here). By the symmetry in IBIC we have ∠(BC, IBIC) = ∠(IBIC , `).
Thus ∠(IY,GY ) = (IBIC , `), so IY ⊥ IB1IC1 implies that GY ⊥ `.

Let T ′ be the reflection of T in IBIC . The segments IT and Y T ′ are symmetric
about the line IBIC and so are the lines BC and `. Since Y T ′ ⊥ ` it follows that
G lies on Y T ′. Finally, the distance between G and ` is equal to GY − Y T ′ =



GY − IT = R(γ)−R(ω), which is constant. (Here R(s) denotes the radius of
a circle s.)

The problem statement easily follows from this theorem. Observe that all lines
`AB , `BC , `CD, `DE , `EF , `FA are tangent to the same circle, which implies
that the hexagon A1B1C1D1E1F1 is tangential. By the Brianchon theorem its
diagonals are concurrent.
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