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Решени󰑱 󰑬адач дн󰑱 1
󰑪адача 1. Найдите все натурал󰑭ные n со следу󰑧щим свойством: существу󰑧т
n последовател󰑭ных натурал󰑭ных чисел, сумма которых 󰑱вл󰑱етс󰑱 квадратом
целого числа. (Pavel Kozhevnikov)

Ответ: n = 2s ·m, где m 󰯹 л󰑧бое нечётное число, а s 󰯹 0 или нечётное.

Обо󰑬начим S(n, t) = (t+ 1) + (t+ 2) + . . .+ (t+ n) = (2t+ n+ 1)nn/2.

Дл󰑱 нечётного n мо󰑨но в󰑬󰑱т󰑭 t = (n− 1)/2, тогда S(n, t) = n2.

Пуст󰑭 n чётное, n = 2s ·m, где s натурал󰑭ное, а m нечётное. Получаем, что
2t + n + 1 󰯹 нечётное число. Таким обра󰑬ом, S(n, t) делитс󰑱 на 2s−1 и не
делитс󰑱 на 2s. Отс󰑧да сра󰑬у следует, что дл󰑱 чётных s квадратом S(n, t)
быт󰑭 не мо󰑨ет. Дл󰑱 нечётных s мо󰑨но в󰑬󰑱т󰑭 t = (mx2 − n − 1)/2, где x
нечётное, и x > n. Тогда получим, что S(n, t) = 2s−1m2x2.

󰑪адача 2. Даны натурал󰑭ные числа a1, . . . , an, удовлетвор󰑱󰑧щие неравенству
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Правител󰑭ство страны Оптимистики е󰑨егодно публикует Годовой Отчет, со-
дер󰑨ащий n экономических индикаторов. Дл󰑱 ка󰑨дого i = 1, . . . , n индикатор
под номером i мо󰑨ет принимат󰑭 натурал󰑭ные 󰑬начени󰑱 1, 2, . . . , ai. Годовой От-
чет на󰑬ываетс󰑱 оптимистичным, если 󰑬начени󰑱 хот󰑱 бы n − 1 индикаторов
выросли по сравнени󰑧 с предыдущим годом. Дока󰑨ите, что правител󰑭ство мо-
󰑨ет бесконечно долго публиковат󰑭 оптимистичные Годовые Отчеты.

(Ivan Mitrofanov, Fedor Petrov)

Оценим ка󰑨дое ai степен󰑱ми двойки: 2ki 󰃑 ai < 2ki+1. 󰑪аметим, что󰁓
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󰃑 1. Пока󰑨ем, как в натурал󰑭ном р󰑱ду ра󰑬местит󰑭 непересе-
ка󰑧щиес󰑱 арифметические прогрессии с ра󰑬ност󰑱ми 2ki . Бе󰑬 ограничени󰑱
общности мо󰑨но считат󰑭, что k1 󰃑 k2 . . . 󰃑 kn. Будем дока󰑬ыват󰑭, что



мо󰑨но ра󰑬местит󰑭 прогрессии с ра󰑬ност󰑱ми 2k1 , 2k2 , . . . , 2ki индукцией по
i. Ба󰑬а i = 1 очевидна. Тепер󰑭 переход. Пуст󰑭 мы ра󰑬местили i прогрессий,
пока󰑨ем, как ра󰑬местит󰑭 следу󰑧щу󰑧. 󰑪аметим, что при j < i прогресси󰑱
с ра󰑬ност󰑭󰑧 2kj целиком 󰑬анимает 2ki−kj остатков при делении на 2ki . То-
гда дол󰑱 остатков, 󰑬ан󰑱тых прогрессией 2kj , равна 2−kj . А так как сумма
обратных величин мен󰑭ше единицы, то неи󰑬расходованные остатки еще
осталис󰑭, что даёт во󰑬мо󰑨ност󰑭 ра󰑬местит󰑭 нову󰑧 прогресси󰑧.

Перейдём тепер󰑭 к решени󰑧 󰑬адачи. Будем считат󰑭, что i-й индикатор
принимает тол󰑭ко 2ki 󰑬начений. Тогда этот параметр будет ка󰑨дый год
увеличиват󰑭с󰑱 до следу󰑧щего по величине 󰑬начени󰑱, кроме тех лет, ко-
торые пришлис󰑭 на соответству󰑧щу󰑧 арифметическу󰑧 прогресси󰑧, в эти
годы этот параметр опускаетс󰑱 до минимал󰑭ного 󰑬начени󰑱. Как мы видим,
ка󰑨дый параметр во󰑬растает ровно 2ki − 1 ра󰑬 подр󰑱д, то ест󰑭 испол󰑭󰑬у-
етс󰑱 ровно 2ki 󰑬начений.

󰑪адача 3. В окру󰑨ност󰑭 вписан выпуклый многоугол󰑭ник A1A2 . . . An. И󰑬-
вестно, что центр этой окру󰑨ности находитс󰑱 строго внутри многоугол󰑭ника
A1A2 . . . An. На сторонах A1A2, A2A3, . . . , AnA1 в󰑬󰑱ты соответственно точки
B1, B2, . . . , Bn, отличные от вершин. Дока󰑨ите, что
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(Nairi Sedrakyan, David Harutyunyan)

Лемма 1. В окру󰑨ност󰑭 радиуса R вписан треугол󰑭ник, в котором нет
тупых углов. Тогда его периметр бол󰑭ше 4R.
Дока󰑬ател󰑭ство. На󰑬овём вершины треугол󰑭ника A, B и C.
Пуст󰑭 треугол󰑭ник ABC 󰯹 пр󰑱моугол󰑭ный. Не наруша󰑱 общности, ∠B =
90◦ и AC = 2R. Тогда AB +BC +AC > AC +AC = 4R.
Пуст󰑭 треугол󰑭ник ABC 󰯹 остроугол󰑭ный. Пуст󰑭 K,L,M 󰯹 середины сто-
рон AB,BC,AC соответственно. И󰑬вестно, что центр O описанной окру󰑨-
ности треугол󰑭ника ABC 󰑱вл󰑱етс󰑱 ортоцентром треугол󰑭ника KLM , ко-
торый подобен треугол󰑭нику ABC, следовател󰑭но, 󰑱вл󰑱етс󰑱 остроугол󰑭-
ным. Поэтому O ле󰑨ит внутри треугол󰑭ника KLM . Пуст󰑭 пр󰑱ма󰑱 MO пе-
ресекает отре󰑬ок KL в точке P . Тогда AB+BC+AC = 2(AK+KL+LC) =
2(AK +KP ) + 2(PL+ LC) > 2AP + 2PC > 2AO + 2CO = 4R (последнее
неравенство верно, поскол󰑭ку в треугол󰑭никах AOP и COP углы AOP и
COP 󰯹 тупые). Лемма 1 дока󰑬ана.

Лемма 2. В окру󰑨ност󰑭 радиуса R вписан многоугол󰑭ник, внутри кото-
рого находитс󰑱 её центр. Тогда его периметр P бол󰑭ше 4R.
Дока󰑬ател󰑭ство. Пуст󰑭 A1A2 . . . An 󰯹 наш многоугол󰑭ник. Проведём диа-
гонали A1A3, A1A4, . . . , A1An−1. Тогда центр O ле󰑨ит внутри или на гра-
нице одного и󰑬 треугол󰑭ников ра󰑬биени󰑱 A1AiAi+1. С помощ󰑭󰑧 леммы 1



получаем дока󰑬ател󰑭ство леммы 2:

P = (A1A2 + . . .+Ai−1Ai) +AiAi+1 + (Ai+1Ai+2 + . . .+AnA1) 󰃍
󰃍 A1Ai +AiAi+1 +Ai+1A1 > 4R .

Лемма 2 дока󰑬ана.

Вернемс󰑱 к 󰑬адаче. Пуст󰑭 R 󰯹 радиус описанной около многоугол󰑭ника
A1A2 . . . An окру󰑨ности, Ri 󰯹 радиус описанной окру󰑨ности треугол󰑭ни-
ка BiAi+1Bi+1 (далее будем считат󰑭, что An+1 ≡ A1, An+2 ≡ A2, Bn+1 ≡
B1). По теореме синусов BiBi+1/ sin∠Ai+1 = 2Ri, AiAi+2/ sin∠Ai+1 = 2R,
поэтому BiBi+1 : AiAi+2 = (2Ri sin∠Ai+1) : (2R sin∠Ai+1) = Ri : R.
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В треугол󰑭нике BiAi+1Bi+1 ка󰑨да󰑱 и󰑬 сторон не превосходит диаметра
описанной окру󰑨ности, поэтому BiAi+1 + Ai+1Bi+1 󰃑 2Ri + 2Ri = 4Ri и
Ri 󰃍 (BiAi+1 +Ai+1Bi+1)/4. 󰑪начит, достаточно дока󰑬ат󰑭 неравенство
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что верно по лемме 2.


