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Solutions of day 1

Problem 1. Find all positive integers n such that there exist n consecutive positive
integers whose sum is a perfect square. (Pavel Kozhevnikov)

Answer: n = 2°m, where m is any odd integer, and s is either 0 or odd.

Let S(n,t) = (t+1)+ (t+2)+...+ (t+n)= (2t +n+1)n/2.

For odd n one may put t = (n — 1)/2 and obtain S(n,t) = n?.

Let n be even, n = 2°m, where s is a positive integer, and m is odd. It
follows that 2t + n + 1 is odd. Hence 2571 divides S(n,t), while 2% does not.

This means that for even s the answer is negative. For odd s one may put
t = (mx? —n —1)/2 for some odd x > n and obtain S(n,t) = 25" 1m2z2. O

Problem 2. Let aq,...,a, be positive integers satisfying the inequality
1

Z p—
— a;

Every year, the government of Optimistica publishes its Annual Report with n eco-
nomic indicators. For each i = 1,...,n, the possible values of the ¢-th indicator are
1,2,...,a;. The Annual Report is said to be optimistic if at least n — 1 indicators
have higher values than in the previous report. Prove that the government can pub-
lish optimistic Annual Reports in an infinitely long sequence.

(Ivan Mitrofanov, Fedor Petrov)
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First we replace each a; by a power of 2. For every 1 < i < n, let k; be the
n

positive integer that satisfies 2% < a; < 2¥*!. Notice that > 2% < al <1.
i=1 ’

For every 1 < i < n, we will choose a residue class 4; modulo 2% in such a way

that the classes A1, ..., A, are pairwise disjoint. Without loss of generality we

can assume that k1 < ko < ... <k,. We choose Ay, Ay, ..., A, in this order.

The residue class A; can be chosen arbitrarily. Suppose that we have already

chosen the classes Aq,...,A;_1. In order to find the next class A;, we require



a residue modulo 2% which is not used in any of A4,..., A;_;. Notice that for

each j < i, the set A; is the union of 2ki—F; different residue classes modulo
1—1 n

ok As S 2ki=ki < ki 3™ 27ki < 9Fi there are unused residues modulo 2%
j=1 J=1

which makes it possible to choose the new class A;.

Now let us turn to the solution of the problem. For every 1 < i < n, we

will use only the first 2% values of the i-th indicator. In the beginning let all

indicators be equal to 1. In the y-th year, let the i-th indicator drop to 1 if

y € A;, otherwise let the indicator increase by 1. Notice that the ¢-th indicator

increases at most 2% —1 times in a row, then drops to 1, so it never exceeds the

bound 2% < a; and therefore the values of the indicator form a valid report in

every year. Since the residue classes A4, ..., A, are pairwise disjoint, at most

one indicator drops in the same year, the reports keep optimistic. Il

Problem 3. Let A1 A5... A, be a cyclic convex polygon whose circumcenter is

strictly in its interior. Let B, Bs, ..., B, be arbitrary points on the sides A;As,
AsAs, ..., A, A1, respectively, other than the vertices. Prove that
BB B>B B,B
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(Nairi Sedrakyan, David Harutyunyan)

Lemma 1. Suppose that a triangle without obtuse angle is inscribed in a circle
of radius R. Then the perimeter of the triangle is greater than 4R.

Proof. Let ABC' be our triangle.

Assume that triangle ABC' is right. Without loss of generality /B = 90° and
AC =2R. Then AB+ BC + AC > AC + AC = 4R.

Assume that triangle ABC' is acute. Let K, L, M be the midpoints of the
sides AB, BC, AC respectively. The point O is the orthocentre of the triangle
K LM, which is acute as well as the similar triangle ABC'. Thus O lies inside
the triangle K LM. Let line MO intersect the segment K L at the point P. We
have AB+ BC + AC =2(AK + KL+ LC)=2(AK + KP)+2(PL+ LC) >
2AP + 2PC > 2A0 + 2C0O = 4R (the last inequality uses that the angles
ZAOP and ZCOP are obtuse). Lemma 1 is proved.

Lemma 2. Assume that a polygon is inscribed in a circle of radius R, and
the center of the circle lies inside the polygon. Then the perimeter P of the
polygon is greater than 4R.

Proof. Let A1 A5 ... A, beour polygon. The diagonals A1 A3, A1 Ay, ..., A1A,_1
partition it into n — 2 triangles. The point O belongs to the interior or the
boundary of A1A;A;+1. Now Lemma 2 follows from the Lemma 1:

P=(A1As+ ...+ A4 1A4)+ AA i+ (A Ao + ...+ AA) >
> A1A; + AiAz’—H + Az’+1A1 > 4R.

Lemma 2 is proved.



Let us return to the problem. Let R denote the circumradius of the circle
A1As ... Ay, let R; denote the circumradius of B; A; 1 B; 11 (further we suppose

Apnt1 = A1, Apio = As, Bpy1 = By). The sine law yields BiBin 2R;,

sin AA,L+1
AiAi+2 . BiBi+1 . 2R; sin ZAi+1 . &
sin éAi_'_l T 2R’ thus AiAi+2 o 2R sin éAi—|—1 T R -
B1By | B3Bs By, By
+ + >1

A AA, T T A4,
> 1

Ri+Ry+...+R,>R.

In the triangle B;A;1+1B;+1 no side can be greater than the diameter of the
circumcircle, therefore B;A;11 + A;+1Biv1 < 2R; + 2R; = 4R; and R; >
(BjAiz1 + A;11B;11)/4. Hence it suffices to prove that

B1As + AsBy  ByAz + A3B B,A, + A1 B P
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R< ; y y =7

but this follows from Lemma 2. O



