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Solutions of day 1
Problem 1. Find all positive integers n such that there exist n consecutive positive
integers whose sum is a perfect square. (Pavel Kozhevnikov)

Answer: n = 2sm, where m is any odd integer, and s is either 0 or odd.

Let S(n, t) = (t+ 1) + (t+ 2) + . . .+ (t+ n) = (2t+ n+ 1)n/2.

For odd n one may put t = (n− 1)/2 and obtain S(n, t) = n2.

Let n be even, n = 2sm, where s is a positive integer, and m is odd. It
follows that 2t + n + 1 is odd. Hence 2s−1 divides S(n, t), while 2s does not.
This means that for even s the answer is negative. For odd s one may put
t = (mx2 − n− 1)/2 for some odd x > n and obtain S(n, t) = 2s−1m2x2.

Problem 2. Let a1, . . . , an be positive integers satisfying the inequality

n󰁛

i=1

1

ai
≤ 1

2
.

Every year, the government of Optimistica publishes its Annual Report with n eco-
nomic indicators. For each i = 1, . . . , n, the possible values of the i-th indicator are
1, 2, . . . , ai. The Annual Report is said to be optimistic if at least n − 1 indicators
have higher values than in the previous report. Prove that the government can pub-
lish optimistic Annual Reports in an infinitely long sequence.

(Ivan Mitrofanov, Fedor Petrov)

First we replace each ai by a power of 2. For every 1 ≤ i ≤ n, let ki be the

positive integer that satisfies 2ki ≤ ai < 2ki+1. Notice that
n󰁓
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2ki

< 2
ai

≤ 1.

For every 1 ≤ i ≤ n, we will choose a residue class Ai modulo 2ki in such a way
that the classes A1, . . . , An are pairwise disjoint. Without loss of generality we
can assume that k1 ≤ k2 ≤ . . . ≤ kn. We choose A1, A2, . . . , An in this order.
The residue class A1 can be chosen arbitrarily. Suppose that we have already
chosen the classes A1, . . . , Ai−1. In order to find the next class Ai, we require



a residue modulo 2ki which is not used in any of A1, . . . , Ai−1. Notice that for
each j < i, the set Aj is the union of 2ki−kj different residue classes modulo

2ki . As
i−1󰁓
j=1

2ki−kj < 2ki

n󰁓
j=1

2−kj < 2ki , there are unused residues modulo 2ki

which makes it possible to choose the new class Ai.
Now let us turn to the solution of the problem. For every 1 ≤ i ≤ n, we
will use only the first 2ki values of the i-th indicator. In the beginning let all
indicators be equal to 1. In the y-th year, let the i-th indicator drop to 1 if
y ∈ Ai, otherwise let the indicator increase by 1. Notice that the i-th indicator
increases at most 2ki−1 times in a row, then drops to 1, so it never exceeds the
bound 2ki ≤ ai and therefore the values of the indicator form a valid report in
every year. Since the residue classes A1, . . . , An are pairwise disjoint, at most
one indicator drops in the same year, the reports keep optimistic.

Problem 3. Let A1A2 . . . An be a cyclic convex polygon whose circumcenter is
strictly in its interior. Let B1, B2, . . . , Bn be arbitrary points on the sides A1A2,
A2A3, . . . , AnA1, respectively, other than the vertices. Prove that

B1B2

A1A3
+

B2B3

A2A4
+ . . .+

BnB1

AnA2
> 1 .

(Nairi Sedrakyan, David Harutyunyan)

Lemma 1. Suppose that a triangle without obtuse angle is inscribed in a circle
of radius R. Then the perimeter of the triangle is greater than 4R.
Proof. Let ABC be our triangle.
Assume that triangle ABC is right. Without loss of generality ∠B = 90◦ and
AC = 2R. Then AB +BC +AC > AC +AC = 4R.
Assume that triangle ABC is acute. Let K,L,M be the midpoints of the
sides AB,BC,AC respectively. The point O is the orthocentre of the triangle
KLM , which is acute as well as the similar triangle ABC. Thus O lies inside
the triangle KLM . Let line MO intersect the segment KL at the point P . We
have AB +BC +AC = 2(AK +KL+ LC) = 2(AK +KP ) + 2(PL+ LC) >
2AP + 2PC > 2AO + 2CO = 4R (the last inequality uses that the angles
∠AOP and ∠COP are obtuse). Lemma 1 is proved.

Lemma 2. Assume that a polygon is inscribed in a circle of radius R, and
the center of the circle lies inside the polygon. Then the perimeter P of the
polygon is greater than 4R.
Proof. Let A1A2 . . . An be our polygon. The diagonals A1A3, A1A4, . . . , A1An−1

partition it into n − 2 triangles. The point O belongs to the interior or the
boundary of A1AiAi+1. Now Lemma 2 follows from the Lemma 1:

P = (A1A2 + . . .+Ai−1Ai) +AiAi+1 + (Ai+1Ai+2 + . . .+AnA1) ≥
≥ A1Ai +AiAi+1 +Ai+1A1 > 4R .

Lemma 2 is proved.



Let us return to the problem. Let R denote the circumradius of the circle
A1A2 . . . An, let Ri denote the circumradius of BiAi+1Bi+1 (further we suppose
An+1 ≡ A1, An+2 ≡ A2, Bn+1 ≡ B1). The sine law yields BiBi+1

sin∠Ai+1
= 2Ri,

AiAi+2

sin∠Ai+1
= 2R, thus BiBi+1

AiAi+2
= 2Ri sin∠Ai+1

2R sin∠Ai+1
= Ri

R .
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⇕
R1 +R2 + . . .+Rn > R .

In the triangle BiAi+1Bi+1 no side can be greater than the diameter of the
circumcircle, therefore BiAi+1 + Ai+1Bi+1 ≤ 2Ri + 2Ri = 4Ri and Ri ≥
(BiAi+1 +Ai+1Bi+1)/4. Hence it suffices to prove that

R <
B1A2 +A2B2

4
+
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4
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4
=
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4
,

but this follows from Lemma 2.


