- 1. Четырёхугольник ABCD вписан в окружность с диаметром AD, O точка пересечения его диагоналей. Окружность с центром в точке O касается стороны BC. Докажите, что касательные к этой окружности, проведённые из точек B и C, пересекаются на AD.
- **2.** В треугольнике $ABC\ A_1$ и B_1 середины высот, опущенных из вершин A и B, M и H середина AB и основание высоты из вершины C соответственно. Докажите, что точки A_1 , B_1 , M, H лежат на одной окружности.
- **3.** На стороне AB квадрата ABCD отмечена точка K, а на стороне BC точка L так, что KB = LC. Отрезки AL и CK пересекаются в точке P. Докажите, что прямые DP и KL перпендикулярны.
- **4.** В угол вписаны две окружности, одна из которых касается сторон угла в точках A и B, а другая в точках C и D. Докажите, что окружности высекают на прямой AD равные хорды.
- **5. а)** Вписанная окружность касается стороны BC треугольника ABC в точке M, вневписанная в точке N; MP диаметр вписанной окружности. Докажите, что точки A, P, N лежат на одной прямой.
- **б)** Пусть A_1 , B_1 , C_1 точки касания вневписанных окружностей со сторонами BC, AC, AB соответственно, N точка пересечения AA_1 и BB_1 , M ближайшая к C точка пересечения вписанной окружности и CC_1 . Докажите, что $CM = NC_1$.
- **6.** На сторонах AB и AC треугольника ABC вовне построены квадраты ABKL и ACMN. Докажите, что прямая, проходящая через A перпендикулярно LN, делит BC пополам.
- 7. Угол B при вершине равнобедренного треугольника ABC равен 120° . Из вершины B внутрь треугольника выпустили 2 луча под углом 60° друг к другу, которые, отразившись относительно основания AC в точках P и Q, попали в точки K и M на сторонах AB и BC соответственно. Докажите, что

$$S_{BPQ} = S_{APK} + S_{CMQ} .$$

- **8.** Найдите ГМТ точек пересечения медиан тупоугольных треугольников, вписанных в данную окружность.
- **9.** Пусть две окружности ω_1 и ω_2 пересекаются в точках A и B. Найдите ГМТ середин хорд XY таких, что $X \in \omega_1, Y \in \omega_2, A \in XY$.

- 1. Четырёхугольник ABCD вписан в окружность с диаметром AD, O точка пересечения его диагоналей. Окружность с центром в точке O касается стороны BC. Докажите, что касательные к этой окружности, проведённые из точек B и C, пересекаются на AD.
- **2.** В треугольнике ABC A_1 и B_1 середины высот, опущенных из вершин A и B, M и H середина AB и основание высоты из вершины C соответственно. Докажите, что точки A_1 , B_1 , M, H лежат на одной окружности.
- **3.** На стороне AB квадрата ABCD отмечена точка K, а на стороне BC точка L так, что KB = LC. Отрезки AL и CK пересекаются в точке P. Докажите, что прямые DP и KL перпендикулярны.
- **4.** В угол вписаны две окружности, одна из которых касается сторон угла в точках A и B, а другая в точках C и D. Докажите, что окружности высекают на прямой AD равные хорды.
- **5. а)** Вписанная окружность касается стороны BC треугольника ABC в точке M, вневписанная в точке N; MP диаметр вписанной окружности. Докажите, что точки A, P, N лежат на одной прямой.
- **б)** Пусть A_1 , B_1 , C_1 точки касания вневписанных окружностей со сторонами BC, AC, AB соответственно, N точка пересечения AA_1 и BB_1 , M ближайшая к C точка пересечения вписанной окружности и CC_1 . Докажите, что $CM = NC_1$.
- **6.** На сторонах AB и AC треугольника ABC вовне построены квадраты ABKL и ACMN. Докажите, что прямая, проходящая через A перпендикулярно LN, делит BC пополам.
- 7. Угол B при вершине равнобедренного треугольника ABC равен 120° . Из вершины B внутрь треугольника выпустили 2 луча под углом 60° друг к другу, которые, отразившись относительно основания AC в точках P и Q, попали в точки K и M на сторонах AB и BC соответственно. Докажите, что

$$S_{BPQ} = S_{APK} + S_{CMQ} .$$

- 8. Найдите ГМТ точек пересечения медиан тупоугольных треугольников, вписанных в данную окружность.
- **9.** Пусть две окружности ω_1 и ω_2 пересекаются в точках A и B. Найдите ГМТ середин хорд XY таких, что $X \in \omega_1, Y \in \omega_2, A \in XY$.