Диагностическая работа

Задача 1. Десятичные цифры натурального числа A образуют возрастающую последовательность (слева направо). Найдите сумму цифр числа 9A.

Peшение. Обозначим $A = \overline{a_n a_{n-1} a_{n-2} \dots a_0}$. Тогда

$$9A = 10A - A = \overline{(a_n)(a_{n-1} - a_n)(a_{n-2} - a_{n-1}) \dots (a_0 - a_1 - 1)(10 - a_0)},$$

поэтому сумма цифр числа 9A равна 9.

Задача 2. Пусть O — центр окружности Ω , описанной около треугольника ABC. Окружность Γ проходит через точки O и B и касается прямой AB в точке B. Окружности Γ и Ω пересекаются второй раз в точке P, отличной от B. Окружность, проходящая через точки P и C, касающаяся прямой AC в точке C, повторно пересекает Γ в точке M. Докажите, что MP = MC.

 $Peшение.\ \angle BMP=180-\angle PBA=\angle PCA=180-\angle PMC,$ поэтому B,M,Cлежат на одной прямой.

$$\angle MCP = \angle BCP = \frac{1}{2}\angle BOP = \frac{1}{2}(180 - 2\angle OPB) = \frac{1}{2}(180 - 2\angle OBA) = \frac{1}{2}\angle AOB = \angle ACB = \angle ACM = \angle MPC$$
, поэтому $MP = MC$.

Задача 3. Даны три квадратных трёхчлена с действительными коэффициентами:

$$f_1(x) = x^2 + a_1x + b_1;$$
 $f_2(x) = x^2 + a_2x + b_2;$ $f_3(x) = x^2 + a_3x + b_3.$

Известно, что у каждого из трёх трёхчленов есть по два различных действительных корня. Оказалось, что при всех действительных x если одновременно верны оба неравенства $f_1(x)\geqslant 0$ и $f_2(x)\geqslant 0$, то верно и $f_3(x)\geqslant 0$. Докажите неравенство

$$a_3^2 + 8b_1 + 8b_2 \le 2a_1^2 + 2a_2^2 + 4b_3$$
.

Решение. Пусть $x_i < y_i$ — корни, а D_i — дискриминант трёхчлена $f_i(x)$ при i = 1, 2, 3.

По условию если $f_1(x) \ge 0$ и $f_2(x) \ge 0$, то и $f_3(x) \ge 0$. Иными словами, если $f_3(x) < 0$, то $f_1(x) < 0$ или $f_2(x) < 0$. Значит, интервал $(x_3; y_3)$ покрыт объединением интервалов $(x_1; y_1)$ и $(x_2; y_2)$. Тогда

$$\sqrt{D_3} = y_3 - x_3 \le (y_1 - x_1) + (y_2 - x_2) = \sqrt{D_1} + \sqrt{D_2}.$$

Возведём полученное неравенство на дискриминанты в квадрат, получим

$$D_3 = (\sqrt{D_3})^2 \le (\sqrt{D_1} + \sqrt{D_2})^2 = D_1 + D_2 + 2\sqrt{D_1D_2} \le 2D_1 + 2D_2.$$

Подставив формулы для дискриминантов, получим

$$a_3^2 - 4b_3 = D_3 \le 2(D_1 + D_2) = 2(a_1^2 - 4b_1 + a_2^2 - 4b_2),$$

что равносильно искомому неравенству.

Задача 4. Из клетчатой доски 2023×2023 вырезали квадратик 2×2 . Оказалось, что оставшуюся доску можно целиком разрезать на прямоугольники 1×5 и 5×1 . Докажите, что квадратик вырезали не с краю.

Решение 1 Докажем, что квадратик не мог быть вырезан, например, из первых двух строчек; для остальных краёв решение будет аналогично. Запишем в каждую клетку доски 2023×2023 номер строки, в которой она находится. Сумма всех чисел равна

$$2023\cdot (1+2+\ldots +2023)\equiv 3\cdot \left(\frac{3\cdot 4}{2}\right)\equiv 3\pmod 5.$$

Если вырезать квадрат из первых двух строк, то сумма чисел в нём будет равна 6, тогда сумма чисел в оставшихся клетках будет давать остаток 2 при делении на 5.

Но в любом прямоугольнике 1×5 и 5×1 сумма чисел кратна 5. Поэтому если оставшуюся часть фигуры можно было бы разбить на такие прямоугольники, то сумма всех оставшихся чисел должна делиться на 5. Противоречие.

Решение 2. Раскрасим доску горизонтальными линиями в пять цветов, так что в первых пяти строках последовательно используются пять цветов, а далее раскраска циклически повторяется по строкам.

С одной стороны, каждый прямоугольник 1×5 или 5×1 разрезания либо включает пять клеток одного цвета, либо по одной клетке каждого цвета. Следовательно, общие количества клеток каждого цвета, оказавшихся в прямоугольниках (т. е. не в квадратике 2×2), дают одинаковые остатки от деления на 5.

С другой стороны, всего в доске по $405 \cdot 2023 \equiv 0 \pmod{5}$ клеток первого, второго и третьего цвета и по $404 \cdot 2023 \equiv 2 \pmod{5}$ клеток четвёртого и пятого цвета. Вырезанный квадратик может изменить эти количества только для тех двух цветов, в чьих строках он окажется. Ясно, что это должны быть четвёртый и пятый цвета, то есть квадратик не может быть вырезан с верхнего или нижнего края доски. Аналогично доказывается, что он не может вырезан с правого или левого края.

Задача 5. Биссектрисы треугольника ABC пересекаются в точке I. Прямая ℓ , проходящая через I, повторно пересекает окружности, описанные около треугольников AIB и AIC, в точках P и Q соответственно. Докажите, что центр описанной окружности треугольника APQ лежит на описанной окружности треугольника ABC.

Peшeнue. Отметим $D = BP \cap CQ.$ Тогда

$$\angle DPQ = \angle BPI = \angle BAI = \angle IAC = \angle IQC = \angle PQD$$
,

т.е. DP = DQ и $\angle PDQ = \angle PAQ$, значит D лежит на описанной окружности треугольника ABC.

Тогда

$$\angle DPA = \angle BPA = \angle BIA = 90^{\circ} - \angle ICB$$

таким образом $\angle PAD = 90^{\circ} - \angle ICB = \angle DPA$. Тогда $DA = DP =$	DQ, значит
D является центрм описанной окружности APQ , и лежит на описанной	окружности
треугольника ABC .	

Задача 6. Маша отметила на доске 100×100 несколько клеток и разрешила королю ходить только по отмеченным клеткам. Затем Маша выбрала две отмеченные клетки и сообщила Лене минимальное число ходов короля от одной до другой. Какое наи-большее число могла услышать Лена?

Решение. Оценка. Разобьём доску на 2500 квадратиков 2×2 . Заметим, что в каждом из них король сделает не более 1 хода. Также заметим, что поскольку рассматривается кратчайший путь короля между двумя отмеченными клетками, то король побывает в каждом квадрате 2×2 не более одного раза за весь путь. Таким образом, Лена не могла услышать число, большее 2499 + 2500 = 4999.

Пример. Пример пути длины $2k^2$ в квадрате $2k \times 2k$ строится так.

Путь в квадрате 2×2 начинается в левой верхней и заканчивается в правой нижней клетке. Если нужный путь в квадрате $(2k-2) \times (2k-2)$ уже построен и заканчивается в правой нижней клетке, добавим каемку ширины 2 вдоль нижней и левой стороны квадрата и продолжим путь одним ходом вниз, одним ходом вниз-влево, а затем по клеткам каемки по часовой стрелке, пропуская левый нижний угол и заканчивая в левом верхнем углу. При добавлении каемки добавилось $(2k)^2 - (2k-2)^2 = 8k-4$ клетки, из них в проведенный путь попало 4k-2. Таким образом, мы получили путь длины $2(k-1)^2 + 4k-2 = 2k^2$, а если доску повернуть на 180 градусов, он еще и будет снова заканчиваться в правом нижнем углу. Проделав эту операцию, начиная с квадрата 2×2 , 49 раз, мы получим пример пути в квадрате 100×100 .