Квадратные трёхчлены

Определение.

Kвадратным трёхчленом называется выражение вида $ax^2 + bx + c$, где a,b,c - коэффициенты, x — переменная.

 \mathcal{A} искриминантом квадратного трёхчлена ax^2+bx+c называется число $D=b^2-4ac.$

K o p h s m u квадратного трёхчлена $a x^2 + b x + c$ называются решения уравнения $a x^2 + b x + c = 0$.

Формула корней. Квадратный трёхчлен $ax^2 + bx + c$ имеет следующие корни:

- \bullet Если D < 0, то решений нет;
- Если D=0, то решение одно: $x_0=-\frac{b}{2a}$, и трёхчлен раскладывается на множители $ax^2+bx+c=a(x-x_0)^2$;
- ullet Если D>0, то решений два: $x_{1,2}=\frac{-b\pm\sqrt{D}}{2a}$, и трёхчлен раскладывается на множители $ax^2+bx+c=a(x-x_1)(x-x_2)$.

Теорема Виета. Пусть x_1, x_2 — корни квадратного трёхчлена $ax^2 + bx + c$. Тогда $x_1 + x_2 = -\frac{b}{a}, x_1 \cdot x_2 = \frac{c}{a}$.

- **1.** Числа 2468 и 8642 корни квадратного трёхчлена $4x^2 + bx + c$. Найдите корни трёхчлена $x^2 + bx + 4c$.
- **2.** Дан квадратный трёхчлен f(x). Известно, что для различных чисел a,b,c верно равенство: f(a+c)-f(a)=f(b+c)-f(b). Маша взяла различные числа d,e, и сказала, что f(d+c)-f(d)=f(e+c)-f(e)+2025. Может ли она говорить правду?
- **3.** Докажите, что если c(a+b+c)<0, то уравнение $ax^2+bx+c=0$ имеет действительный корень.
- **4.** Известно что у квадратного трёхчлена $x^2 + ax + b + 1$ имеется два натуральных корня. Докажите что число $a^2 + b^2$ является составным.
- **5.** f(x), g(x) два приведённых квадратных трёхчлена. Их произведение имеет 4 действительных корня и выполняются равенства

$$g(1) = f(2), g(2) = f(1).$$

Найдите сумму всех 4 корней этих трёхчленов.

- 6. Даны три приведённых квадратных трёхчлена с дискриминантами 25, 49 и 144. Всегда ли получится разбить шесть корней этих трёхчленов на две группы с равными суммами?
- 7. Алиса взяла 2024 различных целых числа $a_1, b_1, a_2, b_2 \dots$ и перемножила квадратные трёхчлены $x^2 a_i x + b_i$, получился многочлен P(x). Боб взял

другие 2024 различных целых числа $c_1,d_1,c_2,d_2\dots$ и также перемножил квадратные трёхчлены $x^2-c_ix+d_i$, получился многочлен Q(x). Может ли быть такое что P(x)=Q(x)?

- 8. Учитель написал на доске квадратное уравнение $x^2 + 1111x + 2222$, после чего каждый из учеников по очереди увеличивал или уменьшал на единицу либо коэффициент при x, либо слагаемое без x. В результате на доске оказалось написано уравнение $x^2 + 2222x + 1111$. Верно ли, что в некоторый момент на доске было написано уравнение с целыми корнями?
- **9.** Дан квадратный трёхчлен f(x) с действительным коэффициентами. Нашлась такая пара целых чисел x_1, x_2 , что $f(x_1) f(x_2)$ квадрат натурального числа. Докажите, что найдется бесконечно много пар целых чисел k_1, k_2 , для каждой из которых $f(k_1) f(k_2)$ квадрат натурального числа.