Вписанные углы (ещё)

- 1. ABCD выпуклый четырёхугольник, в котором AB = BC и AD = DC. На диагонали AC отмечена такая точка K, что AK = BK и четырёхугольник KBCD вписанный. Докажите, что BD = CD.
- **2.** На гипотенузе BC прямоугольного треугольника ABC отмечены точки D и E, такие, что $AD \perp BC$ и AD = DE. На стороне AC отмечена точка F, такая, что $EF \perp BC$. Найдите $\angle ABF$.
- **3.** В окружность вписан пятиугольник ABCDE. Отрезки AC и BD пересекаются в точке K. Отрезок CE касается описанной окружности треугольника ABK в точке N. Найдите $\angle CNK$, если известно, что $\angle ECD = 40^\circ$.
- 4. На сторонах BC, CA и AB треугольника ABC лежат точки M, N, K соответственно, не совпадающие с вершинами. Треугольник MNK назовём красивым, если $\angle BAC = \angle KMN$ и $\angle ABC = \angle KNM$. Докажите, что если в треугольнике ABC существуют два красивых треугольника с общей вершиной, то треугольник ABC прямоугольный.
- **5.** В выпуклом четырехугольнике ABCD известно, что $\angle DAB = 90^{\circ}, P-$ середина стороны BC. Оказалось, что $\angle ADB = \angle CAP$. Докажите, что $\angle ADC = \angle BAP$.
- 6. Окружности ω_1 , ω_2 и ω_3 проходят через точку P. Касательная к ω_1 , проведённая в точке P, вторично пересекает ω_2 и ω_3 в точках P_{12} и P_{13} . Точки P_{21} , P_{23} , P_{31} , P_{32} определяются аналогично. Докажите, что серединные перпендикуляры к отрезкам $P_{12}P_{13}$, $P_{21}P_{23}$ и $P_{31}P_{32}$ пересекаются в одной точке.
- 7. В окружность ω с центром O вписан правильный треугольник ABC. Пусть P точка дуги BC. Касательная к ω в точке P пересекает продолжения прямых AB и AC в точках K и L соответственно. Докажите, что $\angle KOL > 90^\circ$.