Многочлены.

- **1.** Про квадратные трехчлены f_1 и f_2 известно, что они оба имеют корни. Разность $f_1 f_2$ не имеет корней. Докажите что $f_1 + f_2$ имеет корни.
- **2.** На графике многочлена с целыми коэффициентами отмечены две точки с целыми координатами. Докажите, что если расстояние между ними целое число, то соединяющий их отрезок параллелен оси абсцисс.
- 3. Учитель написал на доске квадратный трёхчлен $x^2 + 10x + 20$. Затем каждый ученик по очереди увеличивал или уменьшал на единицу по своему выбору либо коэффициент при x, либо свободный член. В результате получился трёхчлен $x^2 + 20x + 10$. Верно ли, что в некоторый момент на доске был написан квадратный трёхчлен с целыми корнями?
- **4.** Дан многочлен $P(x) = x^4 + x^3 3x^2 + x + 2$. Докажите, что у многочлена $P(x)^{2025}$ есть отрицательный коэффициент.
- **5.** Натуральные числа a,b,c и простое p>3 таковы, что a+b+c=p+1, и $a^3+b^3+c^3-1$ делится на p. Докажите, что одно из чисел a,b,c равно 1.
- **6.** Найдите все многочлены P(x) нечетной степени с вещественными коэффициентами такие, что $P(x)^2+1=P(x^2+1)$.
- 7. Даны неконстантные многочлены $A(x) = x^n + a_{n-1}x^{n-1} + \ldots + a_0$ и $B(x) = x^m + b_{m-1}x^{m-1} + \ldots + b_0$. Докажите, что сумма квадратов коэффициентов многочлена A(x)B(x) не меньше, чем $a_0^2 + b_0^2$.