Аддитивная комбинаторика

Для числовых множеств A и B обозначим через A+B множество всевозможных сумм вида a+b, где $a\in A,\ b\in B.$

- 1. Даны два конечных множества A и B, состоящих из целых чисел. Докажите, что $|A+B|\geqslant |A|+|B|-1.$
- **2.** Даны два непересекающихся конечных множества натуральных чисел A и B и два натуральных числа a и b. Известно, что если $x \in A \cup B$, то хотя бы одно из двух утверждений верно: $x a \in A$ или $x + b \in B$. Докажите, что a|A| = b|B|.
- **3.** Натуральные числа a_1, a_2, \ldots, a_n удовлетворяют равенству

$$a_1 + a_2 + \ldots + a_n = 2n - 1.$$

Докажите, что для любого натурального числа $k \in [1, 2n-1]$ из чисел a_i можно выбрать несколько с суммой k.

- **4.** (*Теорема Коши* Дэвенпорта) Даны непустые подмножества A и B множества остатков по простому модулю p. Тогда $|A+B| \ge \min\{p, |A|+|B|-1\}$.
 - (а) Рассмотрим две операции:
 - (1) замена (A, B) на $(A + \{s\}, B)$, где $s \in \mathbb{F}_p$;
 - (2) замена (A, B) на $(A \cap B, A \cup B)$.

Докажите, что обе операции не увеличивают |A + B|.

- (б) Докажите теорему Коши Дэвенпорта.
- **5.** Дано множество A, состоящее из 100 различных натуральных чисел из отрезка $[1,10^6]$. Докажите, что существует такое множество B, состоящее из 200 различных натуральных чисел из того же отрезка, что всевозможные суммы вида a+b, где $a\in A,\,b\in B$, различны (всего $200\cdot 100$ сумм).
- 6. Дана последовательность (a_n) натуральных чисел. Известно, что её первые N членов a_1, a_2, \ldots, a_N различные числа, а при всех n > N число a_n есть наименьшее натуральное число, которое не может быть представлено в виде суммы нескольких (возможно, одного) неповторяющихся элементов множества $\{a_1, a_2, \ldots, a_{n-1}\}$. Докажите, что для всех достаточно больших n выполнено $a_n = 2 \cdot a_{n-1}$.
- 7. ($Teopema\ \mathcal{P}pdema\ \Gammaunsbypra\ 3usa$) Среди любых 2n-1 целых чисел можно выбрать n чисел так, чтобы сумма выбранных была кратна n.
 - (a) Докажите, что для каждого $1 \le k \le p-1$ среди любых p-1 ненулевых остатков по простому модулю p всегда можно выбрать несколько с суммой сравнимой с $k \pmod p$.
 - (б) Докажите теорему в случае, когда n простое число.
 - (в) Докажите теорему в общем случае.