Проективные теоремы

Теорема Паскаля. На окружности в некотором порядке расположены точки A, B, C, D, E, F. Тогда точки пересечения пар прямых AB и DE, BC и EF, CD и AF лежат на одной прямой.

Точки в условии теоремы не обязательно различны. Например, если совпадают точки A и B, то прямая AB будет касательной к окружности.

Теорема Паскаля работает в обратную сторону: если 5 вершин лежит на окружности и точки пересечения пар противоположных сторон лежат на одной прямой, то шестая вершина тоже лежит на окружности.

Теорема Брианшона. Главные диагонали описанного шестиугольника (возможно, самопересекающегося) пересекаются в одной точке.

Теорема Паппа. Точки A,B,C лежат на одной прямой; точки A_1,B_1,C_1 лежат на другой прямой. Тогда точки пересечения пар прямых AB_1 и A_1B,BC_1 и B_1C,CA_1 и C_1A лежат на одной прямой.

Теорема Дезарга. Треугольники ABC и $A_1B_1C_1$ перспективны тогда и только тогда, когда точки пересечения прямых AB и A_1B_1 , BC и B_1C_1 , CA и C_1A_1 лежат на одной прямой.

- 1. Внутри треугольника ABC выбрана точка P. Прямые AP, BP, CP вторично пересекают окружность (ABC) в точках A_1 , B_1 , C_1 соответственно. Докажите, что главные диагонали шестиугольника, образованного пересечением треугольников ABC и $A_1B_1C_1$, пересекаются в одной точке.
- **2.** Четырехугольник ABCD вписан в окружность с центром в точке O. На сторонах BC и CD нашлись точки P и Q такие, что $PA \perp AD$, $QA \perp AB$. Докажите, что P, O, Q лежат на одной прямой.
- 3. Вписанная окружность касается сторон AB, AC и BC треугольника ABC в точках C_1 , B_1 и A_1 соответственно. Прямые A_1B_1 и A_1C_1 пересекают биссектрису внешнего угла A в точках X и Y соответственно. Докажите, что прямые XC_1 и YB_1 пересекаются на вписанной окружности треугольника ABC.
- **4.** В треугольнике ABC биссектрисы углов B и C пересекают стороны AC и AB в точках B_1 и C_1 , а описанную окружность в точках B' и C' соответственно. Прямые B_1C_1 и B'C' пересекаются в точке X. Докажите, что AX касается окружности (ABC).
- **5.** В четырёхугольнике ACD углы A, B и C равны. Докажите, что D лежит на прямой Эйлера треугольника ABC.
- **6.** Окружность ω , вписанная в ромб ABCD, касается стороны AB в точке E. Через точки A и E проведены параллельные прямые до пересечения со сторонами CD и BC в точках N и M соответственно. Докажите, что MN касается ω .

- 7. В углы A, B, C треугольника ABC вписаны окружности $\omega_a, \omega_b, \omega_c$ соответственно, касающиеся друг друга внешним образом в точках A_1, B_1, C_1 (ω_a и ω_b касаются друг друга в точке C_1). Докажите, что прямые AA_1, BB_1, CC_1 пересекаются в одной точке.
- 8. В треугольнике ABC проведены высоты AA_1 и BB_1 и биссектрисы AA_2 и BB_2 ; вписанная окружность касается сторон BC и AC в точках A_3 и B_3 . Докажите, что прямые A_1B_1 , A_2B_2 и A_3B_3 пересекаются в одной точке или параллельны.
- 9. Вписанная окружность с центром в точке I касается сторон AB, AC и BC треугольника ABC в точках C_1 , B_1 и A_1 соответственно. Прямая ℓ проходит через вершину A параллельно BC. Прямые A_1B_1 и A_1C_1 пересекают ℓ в точках P и Q соответственно. Докажите, что прямые BP, CQ, B_1C_1 и IA_1 пересекаются в одной точке.
- **10.** Внутри треугольника ABC расположена окружность ω . Из точки A к ω проведены две касательные, которые пересекают сторону BC в точках A_1 и A_2 . Точки B_1 , B_2 , C_1 и C_2 определяются аналогично. Докажите, что если пять из этих точек лежат на одной окружности, то и шестая тока лежит на этой окружности.