Корни из единицы

В этом листике за w_k будем обозначать корень из единицы n-ой степени вида $w_k = \cos\frac{2\pi k}{n} + i\sin\frac{2\pi k}{n}, \ k = 0, \dots, n-1.$

Определение. Комплексный корень w_k n-ой степени из единицы называется npu-митивным, если все числа $1, w_k, w_k^2 \dots w_k^{n-1}$ различны.

- **1.** Докажите, что корень w_k n-ой степени из единицы примитивный тогда и только тогда, когда $\mathrm{HOД}(k,n)=1.$
- 2. Найдите:
 - (a) $\sigma_1 = w_0 + w_1 + \cdots + w_{n-1}$,
 - (6) $\sigma_2 = w_0 w_1 + w_0 w_2 + \dots + w_{n-2} w_{n-1}$,
 - (B) $w_0^m + w_1^m + \cdots + w_{n-1}^m$.
- **3.** Даны многочлены P(x), Q(x), R(x) такие, что $P(x^5) + xQ(x^5) + x^2R(x^5)$ делится на $1 + x + x^2 + x^3 + x^4$. Докажите, что P(x) делится на x 1.
- **4. (а)** Докажите, что

$$n = (1 - w_1) \cdot (1 - w_1^2) \cdot (1 - w_1^3) \cdot \dots \cdot (1 - w_1^{n-1}).$$

Для каких других корней из единицы верно данное равенство?

(б) Для нечетных n найдите, чему равно

$$\left| (1-w_1) \cdot (1-w_1^2) \cdot (1-w_1^3) \cdot \dots \cdot (1-w_1^{\frac{n-1}{2}}) \right|.$$

(в) Для нечетных n найдите, чему равно

$$|S_n| = \left|1 + w_1 + w_1^4 + w_1^9 + \ldots + w_1^{(n-1)^2}\right|.$$

- **5.** Назовем конечную последовательность a_1, a_2, \ldots, a_n p-уравновешенной, если все суммы вида $a_k + a_{k+p} + a_{k+2p} + \ldots$ $(k = 1, 2, \ldots, p)$ равны между собой. Докажите, что если 50-членная последовательность p-уравновешена для p = 3, 5, 7, 11, 13, 17, то все ее члены равны нулю.
- **6.** Докажите, что если для корней простой степени p и целых чисел $\alpha_i, i = 1 \dots p-1$ выполнено, что $\alpha_1 w_1 + \alpha_2 w_2 + \dots + \alpha_{p-1} w_{p-1} = 0$, то все $\alpha_i = 0$.