Частный случай теоремы Кэзи

Утверждение. Окружности ω_1 и ω_2 касаются в точке T. На ω_2 выбраны точки A и B. Обозначим длины касательных к ω_1 , проведённые из точек A и B, через t_a и t_b соответственно. Докажите, что $TA/TB = t_a/t_b$.

- 1. Хорды AC и BD окружности Ω пересекаются в точке E. Окружность, вписанная в криволинейный треугольник ADE касается отрезков AE и DE в точках P и Q соответственно, а ω внутренним образом в точке T. Прямая PQ пересекает отрезок AB в точке X. Докажите, что прямая TX биссектриса угла ATB.
- 2. Окружность Ω проходит через вершины B и C неравнобедренного треугольника ABC и содержит внутри себя вершину A. Окружность ω касается отрезков AB и AC в точках P и Q и касается окружности Ω внутренним образом в точке T. Прямые BC и PQ пересекаются в точке X. Докажите, что прямая TX проходит через середину дуги BTC окружности Ω .

Предыдущее утверждение можно использовать в обратную сторону для доказательства того, что окружности касаются. Если для точек $A,\,B,\,C$ и точки T на окружности ω выполнено $\frac{t_a}{TA} = \frac{t_b}{TB} = \frac{t_c}{TC}$, то окружности (ABC) и ω касаются в точке T. Однако этот критерий неудобно использовать — нужно знать точку касания. Следующее утверждение в этом плане оказывается полезнее.

Теорема Кэзи, частный случай. Предположим, на плоскости даны окружность ω и точки $A,\,B,\,C$ вне неё, не лежащие на одной прямой. Обозначим длины отрезков касательных из точек $A,\,B,\,C$ к окружности ω через $t_a,\,t_b,\,t_c$ соответственно. Тогда окружность (ABC) касается окружности ω в том и в только в том случае, если для некоторой расстановки знаков + и - выполнено соотношение

$$\pm t_a BC \pm t_b AC \pm t_c AB = 0.$$

- 3. Теорема Фейербаха. Докажите, что в неравнобедренном треугольнике *ABC* окружность девяти точек касается (а) вписанной окружности; (б) трёх вневписанных окружностей.
- Докажите, что в неравнобедренном треугольнике расстояние от точки Фейербаха до середины одной из сторон равно сумме расстояний от точки Фейербаха до середин двух других.
- 5. Хорды AC и BD окружности ω пересекаются в точке X. Докажите, что радикальная ось окружностей, вписанных в криволинейные треугольники AXB и CXD, проходит через середины дуг BC и DA.
- **6.** Точка I центр вписанной окружности треугольника ABC. Точка X на стороне AB такова, что AX = AI. Окружность ω , вписанная в угол BAC, содержит точку X. Докажите, что центр одной из окружностей, проходящей через точки B и C и касающейся ω внутренним образом, лежит на (ABC).
- 7. Четырехугольник ABCD с перпендикулярными диагоналями вписан в окружность с центром в точке O. Касательные к окружности в точках A и C вместе с прямой BD образуют треугольник Δ . Докажите, что окружность (BOD) касается описанной окружности треугольника Δ .