Разностные многочлены

Определение. Разностной функцией или дискретной производной функции f(x) называется функция $\Delta f(x) \equiv f(x+1) - f(x)$.

 \mathcal{A} искретной производной k-го порядка функции f(x) называется функция, определяемая индуктивно как $\Delta^k f(x) \equiv (\Delta^{k-1} f)(x+1) - (\Delta^{k-1} f)(x)$.

- **1.** Найдите явную формулу для $\Delta^k f(x)$.
- **2.** Докажите, что для любого многочлена Q(x) существует единственный с точностью до прибавления константы многочлен P(x), такой что $\Delta P(x) = Q(x)$.
- **3.** Докажите, что функция f(x) от целого аргумента является многочленом тогда и только тогда, когда существует $k \in \mathbb{N}$, такое что $\Delta^k f(x) = 0$.
- **4.** Докажите, что функция $f(n) = 1^k + 2^k + \ldots + n^k$ является многочленом для всех натуральных k. Чему равны его степень и старший коэффициент?
- **5.** Введём многочлен $C^k_x \equiv \frac{x(x-1)(x-2)...(x-k+1)}{k!}$ для $k \in \mathbb{N} \cup \{0\}, \ x \in \mathbb{R}.$ (a) Интерполяционная формула Ньютона. Докажите, что много-
 - (а) Интерполяционная формула Ньютона. Докажите, что многочлен P(x) с вещественными коэффициентами степени n является линейной комбинацией многочленов $C_x^0, C_x^1, \ldots, C_x^n$ с вещественными коэффициентами, при этом коэффициенты определены однозначно.
 - (б) Пусть также известно, что P(x) принимает целые значения в точках $m, m+1, \ldots, m+n$ для некоторого целого m. Докажите, что коэффициенты из прошлого пункта являются целыми. Выведите отсюда, что P(x) принимает целые значения во всех целых точках.
- **6.** Многочлен P(x) степени n таков, что $P(k) = 3^k$, при $k = 0, 1, \dots, n$. Чему равно P(n+1)?
- **7.** Докажите, что любое рациональное число представляет собой сумму кубов четырех рациональных чисел.
- **8.** Даны натуральные числа a_1, a_2, \dots, a_m . Докажите, что при $n > a_1 + a_2 + \dots + a_m$ верно

$$\sum_{k=0}^{n} (-1)^{k} C_{n}^{k} C_{k}^{a_{1}} C_{k}^{a_{2}} \dots C_{k}^{a_{m}} = 0.$$

9. Пусть p — простое число. Будем называть последовательность $\{x_n\}$ p-кластером, если для любого целого $a \ge 0$ найдется N, такое что при всех натуральных $m \ge N$ выражение $\sum_{k=0}^m (-1)^k C_m^k x_k$ делится на p^a . Докажите, что произведение двух p-кластеров является p-кластером.