Алгебраический взгляд на степень точки

Рассмотрим окружность ω , заданную уравнением f(x,y)=0, где $f(x,y)=(x-a)^2+(y-b)^2-R^2$. Тогда $f(x_0,y_0)$ равно степени точки (x_0,y_0) относительно ω .

Мысль 1. Можно рассмотреть сумму нескольких уравнений окружностей с коэффициентами так, чтобы получилась линейная функция. Например, разность двух уравнений.

Мысль 2. Геометрическим местом точек X таких, что $\operatorname{Pow}_{\omega_1} X = k \cdot \operatorname{Pow}_{\omega_2} X$ для $k \neq 1$, является либо окружность (возможно, нулевого радиуса), соосная ω_1 и ω_2 , либо пустое множество.

- **1.** Даны две окружности ω_1 и ω_2 . Точка P лежит на первой окружности, а точка Q на второй. Радикальная ось окружностей пересекает прямую PQ в точке X. Докажите, что $\operatorname{Pow}_{\omega_2} P/\operatorname{Pow}_{\omega_1} Q = -\overrightarrow{PX}/\overrightarrow{QX}$.
- **2.** Две окружности пересекаются в точках A и B. Прямая, проходящая через точку A, вторично пересекает окружности в точках C и D. Докажите, что середины отрезков CD лежат на одной окружности.
- 3. Диагонали вписанного четырёхугольника ABCD пересекаются в точке P. На диагоналях AC и BD отмечены точки K и L соответственно так, что CK = AP и DL = BP. Докажите, что прямая, проходящая через точки пересечения окружностей (ALC) и (BKD), содержит точку пересечения средних линий четырёхугольника ABCD.
- **4.** Секущая пересекает первую окружность в точках A_1 , B_1 , а вторую в точках A_2 , B_2 . Вторая секущая пересекает первую окружность в точках C_1 , D_1 , а вторую в точках C_2 , D_2 . Докажите, что точки $A_1C_1 \cap B_2D_2$, $A_1C_1 \cap A_2C_2$, $A_2C_2 \cap B_1D_1$, $B_2D_2 \cap B_1D_1$ лежат на одной окружности, соосной с данными двумя.
- **5.** Окружность, вписанная в треугольник ABC, касается сторон AB и AC в точках C' и B' соответственно. Прямая B'C' пересекают описанную окружность треугольника ABC в точках A_1 и A_2 . Аналогично определим точки B_1 , B_2 , C_1 , C_2 . Докажите, что середины отрезков AA_1 , AA_2 , BB_1 , BB_2 , CC_1 , CC_2 лежат на одной окружности.
- 6. На стороне BC треугольника ABC лежит точка D. Окружности, описанные около треугольников ABD и ACD, повторно пересекают стороны AC и AB в точках E и F соответственно. Докажите, что окружности, описанные около треугольников AEF, проходят через фиксированную точку на медиане из вершины A, не зависящую от положения точки D на стороне BC.
- 7. Точка P на вписанной окружности треугольника ABC такова, что из отрезков касательных из точки P к трём вневписанным окружностям треугольника ABC можно составить прямоугольный треугольник. Докажите, что P лежит на средней линии треугольника.

8. Четырёхугольник ABCD не является вписанным. Докажите, что

$$\frac{1}{\operatorname{Pow}_{(BCD)}A} + \frac{1}{\operatorname{Pow}_{(ACD)}B} + \frac{1}{\operatorname{Pow}_{(ABD)}C} + \frac{1}{\operatorname{Pow}_{(ABC)}D} = 0.$$

9. Четырёхугольник ABCD, в котором нет параллельных сторон, вписан в окружность ω . Через вершину A проведена прямая $\ell_a \parallel BC$, через вершину B — прямая $\ell_b \parallel CD$, через вершину — прямая $\ell_c \parallel DA$, через вершину D — прямая $\ell_d \parallel AB$. Четырёхугольник, последовательные стороны которого лежат на этих четырёх прямых (именно в таком порядке), вписан в окружность γ . Окружности ω и γ пересекаются в точках E и F. Докажите, что прямые AC, BD, EF пересекаются в одной точке.