Отбор на сборы

- 1. Дан остроугольный треугольник ABC с AB < AC. Обозначим через D, E, F основания высот из вершин A, B, C, соответственно. Описанная окружность Γ треугольника AEF пересекает описанную окружность треугольника ABC в точках A и M. Известно, что BM касается Γ . Докажите, что точки M, F и D лежат на одной прямой.
- **2.** Последовательность $\{x_n\}, n \in \mathbb{N}$ задаётся формулой $x_{n+1} = 3x_n^3 + x_n, \forall n \in \mathbb{N}$, и $x_1 = \frac{a}{b}$ для натуральных a, b, причём $b \not / 3$. Докажите, что если для некоторого m число x_m квадрат рационального числа, то и $\frac{a}{b}$ квадрат рационального числа.
- 3. Дан выпуклый многоугольник P. Назовём триангуляцию P прекрасной, если для каждого её треугольника при его удалении ровно один из получившихся многоугольников имеет нечётное количество сторон (при удалении треугольника получается 0, 1, 2 или 3 меньших многоугольника, возможно, с общими вершинами). Докажите, что триангуляция P прекрасна тогда и только тогда, когда из неё можно удалить некоторые диагонали так, чтобы все оставшиеся области стали четырёхугольниками.

Напоминание: триангуляцией называется разбиение многоугольника на треугольники диагоналями, не имеющими общих точек, кроме вершин.

- **4.** Пусть n натуральное число. Докажите, что n^2+n+1 не может быть записано в виде произведения двух натуральных чисел, отличающихся менее чем на $2\sqrt{n}$.
- 5. На столе стоят две коробки, в первой лежит 1000 шариков, пронумерованных числами от 1 до 1000, вторая коробка пустая. За один ход выбирается несколько (больше нуля) шариков из одной коробки и переносится в другую коробку. Если на прошлом ходу уже брались шарики из коробки, то снова брать из неё нельзя. Какое наибольшее количество ходов можно сделать, не выбирая один и тот же набор шариков более одного раза?
- **6.** Дан треугольник ABC с прямым углом при вершине C. Обозначим через ω описанную окружность треугольника ABC. Касательные к ω , проведённые в точках B и C, пересекаются в P. Точка M середина отрезка PB. Прямая CM пересекает ω в точке N, а прямая PN пересекает отрезок AB в точке E. Точка D на отрезке CM такова, что $ED \parallel BM$. Докажите, что описанная окружность треугольника CDE касается ω .