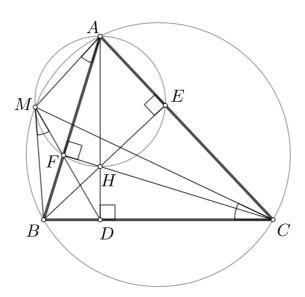
Отбор на сборы. Решения

1. Дан остроугольный треугольник ABC с AB < AC. Обозначим через D, E, F основания высот из вершин A, B, C, соответственно. Описанная окружность Γ треугольника AEF пересекает описанную окружность треугольника ABC в точках A и M. Известно, что BM касается Γ . Докажите, что точки M, F и D лежат на одной прямой.

Решение. Рассмотрим степень точки B относительно окружности (MAF). Так как BM касательная, то $BM^2 = BH \cdot BE$. Точки H, E, C, D лежат на одной окружности, значит, имеется так же равенство $BH \cdot HE = BD \cdot BC$. Тогда $BM^2 = BD \cdot BC$.

Треугольники BMD и BMC имеют общий угол при вершине B, а также $\frac{BD}{BM} = \frac{BM}{BC}$. Значит, они подобны и $\angle BMD = \angle BCM$. Но $\angle BCM = \angle MAB$ из вписанности четырехугольника BMAC, а $\angle MAB = \angle BMF$, так как BM касается (MAF). Значит, $\angle BMF = \angle BMD$ и точки M, F, D лежат на одной прямой. \square



2. Последовательность $\{x_n\}, n \in \mathbb{N}$ задаётся формулой $x_{n+1} = 3x_n^3 + x_n, \forall n \in \mathbb{N}$, и $x_1 = \frac{a}{b}$ для натуральных a, b, причём $b \not / 3$. Докажите, что если для некоторого m число x_m — квадрат рационального числа, то и $\frac{a}{b}$ — квадрат рационального числа.

Решение. Запишем каждый элемент последовательности в виде несократимой дроби. Заметим, что для любой такой дроби её знаменатель будет взаимно прост с тройкой. Действительно, если для некоторого натурального k выполнено x_k

$$\frac{c}{d}$$
, $x_{k+1}=\frac{e}{f}$, то
$$\frac{e}{f}=3\frac{c^3}{d^3}+\frac{c}{d}\Longrightarrow ed^3=(3c^3+cd^2)f,$$

а значит, если $d\not$ 3, то и $f\not$ 3. Тогда, действуя по индукции, несложно установить нужное утверждение.

Докажем далее, что если для некоторого k число x_{k+1} представляет собой квадрат рационального числа $\frac{e^2}{f^2}$, то и число $x_k=\frac{c}{d}$ будет квадратом рационального числа. Имеем равенство

$$\frac{e^2}{f^2} = 3\frac{c^3}{d^3} + \frac{c}{d} \Longrightarrow e^2 d^3 = (3c^3 + cd^2)f^2.$$

Заметим, что числа d^3 и $3c^3+cd^2$ взаимно просты. Действительно, если d^3 и $3c^3+cd^2$ кратны некоторому простому числу p, то тогда $d \in p$ и $3c^3 \in p$. При этом, d не делится на 3, а значит $c \in p$, что невозможно. Тогда $f^2 \in d^3$. Но e^2 взаимно просто с f^2 , а значит $d^3 \in f^2$, и, следовательно, $d^3 = f^2$. Тогда d — квадрат натурального числа. Сокращая обе части уравнения на d^3 , получим

$$e^2 = 3c^3 + cd^2 = c(3c^2 + d^2).$$

Числа c и $3c^2+d^2$ взаимно просты, так как взаимно просты c и d. Тогда, степень вхождения любого просто числа в c должна быть четной, то есть c так же является полным квадратом. Таким образом дробь $\frac{c}{d}$ является квадратом рационального числа.

Спускаясь вниз от числа x_m получаем, что все x_k при $k \leq m$ должны быть квадратами рациональных чисел, в том числе и x_1 .

3. Дан выпуклый многоугольник P. Назовём триангуляцию P прекрасной, если для каждого её треугольника при его удалении ровно один из получившихся многоугольников имеет нечётное количество сторон (при удалении треугольника получается 0, 1, 2 или 3 меньших многоугольника, возможно, с общими вершинами). Докажите, что триангуляция P прекрасна тогда и только тогда, когда из неё можно удалить некоторые диагонали так, чтобы все оставшиеся области стали четырёхугольниками.

Решение. Будем называть результат удаления треугольника из многоугольника эффектом данного треугольника.

• Докажем, что если можно удалить некоторые диагонали так, чтобы все оставшиеся области стали четырёхугольниками, то триангуляция является прекрасной.

Рассмотрим эффект произвольного треугольника Δ триангуляции. Пусть Δ дополняется до четырехугольника треугольником Δ' . Среди образовавшихся меньших многоугольников, ровно в один должен был попасть Δ' . При этом все остальные пары треугольников, дополняющие друг друга до четырехугольника, должны были попасть одновременно в один и тот же

меньший многоугольник, так как ребро между ними удалено не было. Значит, в многоугольнике, содержащем Δ' , будет нечётное число вершин, а во всех других — чётное.

• Докажем, что если триангуляция P является прекрасной, то из неё можно удалить некоторые диагонали так, чтобы все оставшиеся области стали четырёхугольниками.

Удалим треугольник триангуляции, который имеет две общих стороны с многоугольником (известно, что в любой триангуляции такие треугольники существуют). У оставшегося многоугольника по условию нечётное число вершин, поэтому у изначального многоугольника было чётное число вершин.

Будем доказывать утверждение индукцией по числу n для многоугольников с количеством вершин 2n. Для n=2 утверждение очевидно.

Пусть утверждение верно для всех $k \leq n$, докажем его для n+1. Удалим произвольной треугольник Δ триангуляции. В результате удаления получим некоторый меньший многоугольник с нечетным числом вершин, а также некоторое (возможно, пустое) множество $\mathcal A$ меньших многоугольников с чётным числом вершин. Выберем из многоугольника с нечетным число вершин треугольник Δ' , примыкающий к Δ , и посмотрим на его эффект. Очевидно, что все получившееся многоугольники будут с четным числом вершин, так как в многоугольнике образованном Δ и многоугольниками из $\mathcal A$ уже содержится нечетное число вершин. Обозначим соответствующее множество образованных многоугольников за $\mathcal A'$.

Докажем, что для любого многоугольника X из \mathcal{A} или \mathcal{A}' верно предположение индукции. Действительно, пусть, не умоляя общности, $X \in \mathcal{A}$, и мы удалили некоторый треугольник из X. Посмотрим, на эффект данного треугольника для P. Все треугольники, входящие в нетронутые многоугольники из \mathcal{A} или \mathcal{A}' , а также Δ и Δ' , должны попасть в одну компоненту, так как ни одно из соединяющих их ребер не было удалено. Суммарно в них содержится четное число треугольников, а значит они не влияют на четности компонент, которые могли получится при эффекте. Значит, если для P была ровно одна нечетная компонента, то и для X будет ровно одна нечетная компонента.

Применяя предположение индукции для всех многоугольников из \mathcal{A} и \mathcal{A}' , получим, что всех их можно разбить на четырехугольники, и кроме того, четырехугольник можно образовать из Δ и Δ' . Таким образом, шаг индукции доказан.

4. Пусть n — натуральное число. Докажите, что $n^2 + n + 1$ не может быть записано в виде произведения двух натуральных чисел, отличающихся менее чем на $2\sqrt{n}$.

Решение. Пусть $n^2 + n + 1 = ab$, $a, b \in \mathbb{N}$. Имеем

$$(a+b)^2 \ge 4ab = 4(n^2+n+1) = (2n+1)^2 + 3.$$

Тогда, так как a + b натуральное число, то $a + b \ge 2n + 2$. Значит,

$$(a-b)^2=(a+b)^2-4ab\geqslant (2n+2)^2-4(n^2+n+1)=4n,$$
 то есть $|a-b|\geqslant 2\sqrt{n}.$

5. На столе стоят две коробки, в первой лежит 1000 шариков, пронумерованных числами от 1 до 1000, вторая коробка пустая. За один ход выбирается несколько (больше нуля) шариков из одной коробки и переносится в другую коробку. Если на прошлом ходу уже брались шарики из коробки, то снова брать из неё нельзя. Какое наибольшее количество ходов можно сделать, не выбирая один и тот же набор шариков более одного раза?

Omeem. $2^{1000} - 2$.

Решение. Оценка. Всего различных непустых подмножеств $2^{1000}-1$, поэтому больше $2^{1000}-1$ ходов сделать нельзя. Предположим, что получилось сделать ровно $2^{1000}-1$ ход. Так как каждый шарик принимает участие в 2^{999} подмножествах, то с каждым из шариков было совершено четное количество ходов, а значит в конце все шарики должны были оказаться в первой коробке. Но всего количество ходов нечётно, значит последним ходом что-то должно было перенестись в правую коробку. Противоречие. Значит, могло быть не более $2^{1000}-2$ ходов.

Пример. Будем строить алгоритм индуктивно по числу n шариков в коробке. Занумеруем их числами от 1 до n, и докажем, что можно сделать ходы со всеми подмножествами, кроме подмножества $\{1\}$, причем в конце во второй коробке окажется шарик 1, а в первой — все остальные.

База для n=2. Перенесем в правую коробку шарики $\{1,2\},$ а затем в левую шарик 2. Получим искомое.

Пусть утверждение верно для n=k, докажем для k+1. Применим предположение индукции для шариков с номерами $1,\ldots,k$. В результате во второй коробке окажется шарик с номером 1, а в первой все остальные. Причём, последним действием был, очевидно, перенос из второй коробки в первую, так как множество $\{1\}$ мы не использовали. Перенесем во вторую коробку шарик k+1, а затем обратно $\{1,k+1\}$. В итоге все шарики снова оказались в первой коробке. Теперь снова применим предположение индукции, но теперь для каждого хода будем попутно таскать шарик k+1. В результате во второй коробке останется шарик с номером 1, а все подмножества, кроме $\{1\}$ будут использованы.

6. Дан треугольник ABC с прямым углом при вершине C. Обозначим через ω описанную окружность треугольника ABC. Касательные к ω , проведённые в точках B и C, пересекаются в P. Точка M — середина отрезка PB. Прямая CM пересекает ω в точке N, а прямая PN пересекает отрезок AB в точке E. Точка D на отрезке CM такова, что $ED \parallel BM$. Докажите, что описанная окружность треугольника CDE касается ω .

Pешение. Отразим точку N относительно диаметра AB. Обозначим полученную точку за F. Пусть CF пересекает AB в точке E'. Докажем, что E' совпадает с E.

Так как MB касается ω , то $MB^2=MN\cdot MC$. При этом MB=MP. А значит, $MP^2=MN\cdot MC$. У треугольников NPM и CPM общий угол при вершине M, а также $\frac{MP}{MN}=\frac{MC}{MP}$. Тогда $\triangle MPN\sim \triangle CPM$ и $\angle MCP=\angle MPN$. Получаем цепочку равных углов:

$$\angle FNE' = \angle E'FN = \angle CFN = \angle NCP = \angle MCP = \angle MPN.$$

Но $NF \parallel MP$ и $\angle FNE = \angle MPN$. Значит, E' действительно совпадает с E.

Сделаем гомотетию с центром в точке C, переводящую D в N. Тогда точка E перейдёт в F, а окружность (CDE) в ω . Значит, (CDE) и ω касаются в точке C.

