Счёт в комплексных. Продолжение

Определение. Комплексным двойным отношением четвёрки различных точек A, B, C, называется число

$$(a,b;c,d) = \frac{c-a}{c-b} : \frac{d-a}{d-b}.$$

Комплексное двойное отношение точек принимает вещественное значение тогда и только тогда, когда точки A, B, C, D принадлежат одной прямой или окружности.

- **1.** Четырёхугольник ABCD вписан в окружность. Докажите, что ортоцентры треугольников ABC, ABD, ACD и BCD лежат на одной окружности.
- **2.** На плоскости даны четыре окружности ω_1 , ω_2 , ω_3 , ω_4 . Окружности ω_1 и ω_2 пересекаются точках A_1 и B_1 , окружности ω_2 и ω_3 в точках A_2 и B_2 , окружности ω_3 и ω_4 в точках A_3 и B_3 и окружности ω_4 и ω_1 в точках A_4 и B_4 . Доказать, что если точки A_1 , A_2 , A_3 , A_4 лежат на одной окружности или прямой, то и точки B_1 , B_2 , B_3 , B_4 также лежат на одной окружности или прямой.
- **3.** Полезная конструкция. Треугольник ABC вписан в единичную окружность Ω . Точки D, E, F середины малых дуг AB, BC, AC соответственно.
 - (a) Докажите, что существуют числа $x, y, z \in \mathbb{C}$, такие что $a = x^2, b = y^2, c = z^2$, а также d = -xy, e = -yz, f = -xz. Можно ли добиться того, что во всех выражениях для d, e, f будет стоять знак +?
 - (б) Найдите, в терминах переменных x, y, z формулы для центра вписанной и центров вневписанных окружностей треугольника ABC.
- **4.** Точка I центр вписанной окружности треугольника ABC, а точки M и N середины дуг ABC и BAC его описанной окружности. Докажите, что если M, I, N коллинеарны, то $CA \cdot CB = 2 \cdot CI^2$.
- 5. Через вершины A и B треугольника ABC проведена окружность, пересекающая стороны AC и BC второй раз точках M и N соответственно. Через точку M проведена прямая, параллельная стороне BC, а через точку N прямая, параллельная стороне AC. Эти прямые пересекают сторону AB в точках P и Q. Докажите, что четыре точки M, N, P, Q лежат на одной окружности.
- 6. В треугольнике ABC отметили инцентр I и центр вписанной окружности O. Прямая AI пересекает (ABC) второй раз в точке P. Прямая проходящая через I и перпендикулярная AI пересекает BC в точке X. Обозначим за точку Y основание перпендикуляра из точки X на IO. Докажите, что точки A, P, X, Y лежат на одной окружности.
- 7. Обозначим за O центр описанной окружности треугольника ABC. На сторонах AC и AB отметили точки E и F соответственно и пересекли серединные перпендикуляры к BF и CE в точке P. Прямая OP пересекает прямые CA и AB в точках Q и R соответственно, а прямая проходящая через P и перпендикулярная EF пересекает прямые CA и AB в точках S и T соответственно. Докажите, что точки Q, R, S, T лежат на одной окружности.