Радиусы окружностей

В треугольнике ABC

- a, b, c длины соответствующих сторон;
- S площадь, p полупериметр;
- ullet I и O центры вписанной и описанной окружностей, r и R их радиусы;
- r_a, r_b, r_c радиусы вневписанных окружностей со стороны вершин A, B, C.

Известные формулы: $S = pr = (p - a)r_a$, $S = \frac{abc}{4R}$.

- **1.** (а) Докажите, что $rr_a = (p-b)(p-c)$ и $r_b r_c = p(p-a)$. Выведите отсюда формулу Герона.
 - (б) Докажите, что $S = \frac{ar_b r_c}{r_b + r_c}$.
- **2.** Пусть h_a, h_b, h_c длины высот треугольника. Докажите, что

$$\frac{1}{h_a} + \frac{1}{h_b} + \frac{1}{h_c} = \frac{1}{r_a} + \frac{1}{r_b} + \frac{1}{r_c} = \frac{1}{r}.$$

- **3.** Докажите, что угол C треугольника ABC прямой тогда и только тогда, когда $r_c = r + r_a + r_b$.
- **4.** Докажите, что $r_a + r_b + r_c \geqslant \sqrt{3}p$.
- **5.** Докажите, что $4R = r_a + r_b + r_c r$.
- **6.** Докажите, что в прямоугольном треугольнике произведение двух из отрезков $p,\ p-a,\ p-b,\ p-c$ равно произведению двух других. Выведите из этого следующий факт: в прямоугольном треугольнике 12 точек касания вписанной и вневписанных окружностей можно разбить на две шестёрки точек, каждая из которых лежит на одной окружности.
- **7. Формула Карно.** Сумма расстояний от центра описанной окружности остроугольного треугольника до его сторон равна R+r.
 - (а) Пусть A_1 середина дуги BC окружности (ABC), не содержащей точку A. Докажите, что расстояние от A_1 до BC равно $\frac{r_a-r}{2}$. Выведите отсюда формулу Карно.
 - (б) Выведите формулу Карно с помощью теоремы Птолемея.
 - (в) Как будет выглядеть формула Карно для тупоугольного треугольника?
- **8.** Вписанный многоугольник триангулирован. Докажите, что сумма радиусов вписанных окружностей треугольников разбиения не зависит от триангуляпии.
- **9.** Пусть BB_1 и CC_1 биссектрисы треугольника ABC. Докажите, что $R=r_a$ тогда и только тогда, когда O лежит на прямой B_1C_1 .