Счёт в синусах 2

- **1.** Пусть дан угол $\angle ABC < \pi$ и точка X внутри него. Докажите, что луч BX однозначно задаётся отношением синусов углов $\frac{\sin \angle ABX}{\sin \angle CBX}$.
- **2.** Внутри параллелограмма ABCD выбрана точка P таким образом, что $\angle PAD = \angle PCD$. Докажите, что $\angle PBC = \angle PDC$.
- **3.** На сторонах BC, CA, AB треугольника ABC во внешнюю сторону построены треугольники BCD, CAE, ABF так, что

$$\angle BCD = \angle ECA = \varphi, \ \angle CAE = \angle BAF = \theta, \ \angle CBD = \angle ABF = \psi.$$

Докажите, что прямые AD, BE, CF конкурентны.

- **4.** В треугольнике ABC через внутреннюю точку X проведены чевианы AD, BE, CF. В сегмент, отсекаемый прямой AC от описанной окружности ω треугольника ABC (не содержащий точку B), вписана окружность, касающаяся AC в точке E и ω в точке B_1 . Аналогично определяются точки A_1 и C_1 . Докажите, что прямые AA_1, BB_1, CC_1 конкурентны.
- **5.** В остроугольном треугольнике ABC провели высоту AH и диаметр AD описанной окружности. Точка I центр вписанной окружности. Докажите, что $\angle BIH = \angle CID$.
- **6.** Теорема Морлея. В треугольнике ABC проведены трисектрисы (лучи, делящие углы на три равные части). Ближайшие к стороне BC трисектрисы углов B и C пересекаются в точке A_1 ; аналогично определим точки B_1 и C_1 . Докажите, что треугольник $A_1B_1C_1$ равносторонний.
- 7. Пусть ABCD вписанный четырёхугольник такой, что $\angle BAD \leqslant \angle ADC$. Докажите, что $AC+CD \leqslant AB+BD$.
- 8. В треугольнике ABC проведена биссектриса AA_0 , на отрезке AA_0 выбрана точка X. Прямая BX пересекает AC в точке B_0 , а прямая CX пересекает AB в точке CC_0 . Отрезки A_0B_0 и CC_0 пересекаются в точке P, а отрезки A_0C_0 и BB_0 пересекаются в точке Q. Докажите, что углы $\angle BAQ$ и $\angle CAP$ равны.
- **9.** Точка X лежит внутри треугольника ABC. Докажите, что один из углов $\angle XAB$, $\angle XBC$, $\angle XCA$ не больше 30° .

Счёт в синусах 2

[2024-2025]

[ЦПМ, кружок по математике. 9 класс]

1. Пусть дан угол $\angle ABC < \pi$ и точка X внутри него. Докажите, что луч BX однозначно задаётся отношением синусов углов $\frac{\sin \angle ABX}{\sin \angle CBX}$.

группа 9 класс

- **2.** Внутри параллелограмма ABCD выбрана точка P таким образом, что $\angle PAD = \angle PCD$. Докажите, что $\angle PBC = \angle PDC$.
- **3.** На сторонах BC, CA, AB треугольника ABC во внешнюю сторону построены треугольники BCD, CAE, ABF так, что

$$\angle BCD = \angle ECA = \varphi, \ \angle CAE = \angle BAF = \theta, \ \angle CBD = \angle ABF = \psi.$$

Докажите, что прямые AD, BE, CF конкурентны.

- 4. В треугольнике ABC через внутреннюю точку X проведены чевианы $AD,\,BE,\,CF$. В сегмент, отсекаемый прямой AC от описанной окружности ω треугольника ABC (не содержащий точку B), вписана окружность, касающаяся AC в точке E и ω в точке B_1 . Аналогично определяются точки A_1 и C_1 . Докажите, что прямые $AA_1,\,BB_1,\,CC_1$ конкурентны.
- **5.** В остроугольном треугольнике ABC провели высоту AH и диаметр AD описанной окружности. Точка I центр вписанной окружности. Докажите, что $\angle BIH = \angle CID$.
- **6.** Теорема Морлея. В треугольнике ABC проведены трисектрисы (лучи, делящие углы на три равные части). Ближайшие к стороне BC трисектрисы углов B и C пересекаются в точке A_1 ; аналогично определим точки B_1 и C_1 . Докажите, что треугольник $A_1B_1C_1$ равносторонний.
- 7. Пусть ABCD вписанный четырёхугольник такой, что $\angle BAD \leqslant \angle ADC$. Докажите, что $AC + CD \leqslant AB + BD$.
- 8. В треугольнике ABC проведена биссектриса AA_0 , на отрезке AA_0 выбрана точка X. Прямая BX пересекает AC в точке B_0 , а прямая CX пересекает AB в точке CC_0 . Отрезки A_0B_0 и CC_0 пересекаются в точке P, а отрезки A_0C_0 и BB_0 пересекаются в точке Q. Докажите, что углы $\angle BAQ$ и $\angle CAP$ равны.
- **9.** Точка X лежит внутри треугольника ABC. Докажите, что один из углов $\angle XAB$, $\angle XBC$, $\angle XCA$ не больше 30° .