Индукция в неравенствах

- **1. Неравенство Бернулли.** Докажите, что $(1+x)^n \geqslant 1 + xn$ при $n \in \mathbb{N}$ и $x \in (-1, +\infty)$.
- **2.** Для положительного a докажите неравенство

$$\sqrt{a+\sqrt{a+\ldots+\sqrt{a}}}\leqslant \frac{1+\sqrt{4a+1}}{2}$$

3. Докажите, что при всех натуральных n выполнено неравенство

$$\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{n}} < 2\sqrt{n}.$$

- **4.** Докажите неравенство $2^n > n^3$ при натуральном $n \ge 10$.
- **5.** Для натурального n > 1 докажите, что $n^n > (n+1)^{n-1}$.
- **6.** Докажите, что при любых положительных $x_1, x_2, ..., x_n$ (n > 3) выполняется неравенство

$$\frac{x_1}{x_n+x_2} + \frac{x_2}{x_1+x_3} + \ldots + \frac{x_n}{x_{n-1}+x_1} \geq 2.$$

7. Для натурального n докажите неравенство

$$\frac{1}{2} \cdot \frac{3}{4} \cdot \dots \cdot \frac{2n-1}{2n} < \frac{1}{\sqrt{n}}.$$