Теорема Фалеса и подобие

Теорема Фалеса. На одной прямой отмечены точки A_1 , B_1 , C_1 , на другой — A_2 , B_2 , C_2 , причём $A_1A_2 \parallel B_1B_2 \parallel C_1C_2$. Тогда

$$\frac{A_1 B_1}{B_1 C_1} = \frac{A_2 B_2}{B_2 C_2}.$$

- **1. (а)** Жук сидит на стороне *AB* выпуклого четырёхугольника *ABCD*. Он четыре раза последовательно переполз на соседнюю сторону, двигаясь параллельно диагоналям *AC*, *BD*, *AC*, *BD*. Докажите, что жук вернулся в исходную точку.
 - **(b)** Жук сидит на стороне AB треугольника ABC. Он шесть раз последовательно переполз на соседнюю сторону, двигаясь параллельно сторонам CA, AB, BC, CA, AB, BC. Докажите, что жук вернулся в исходную точку.
- **2.** На стороне AD параллелограмма ABCD выбрана точка X, а на сторонах AB и CD соответственно точки Y и Z так, что $XY \parallel BD$, $XZ \parallel AC$. Докажите, что площади треугольников BXY и CXZ равны.
- **3.** В треугольнике *ABC* проведена биссектриса *BD* (**a**) внутреннего (**b**) внешнего угла. Докажите, что AD:DC=AB:BC.
- **4.** На сторонах BC и AC треугольника ABC отмечены точки K и L соответственно, причём BK: KC = 1: 3, AL: LC = 2: 5. Отрезки BL и AK пересекаются в точке O. Найдите AO: OK.
- **5.** Пусть B_1 и C_1 проекции вершин B и C треугольника ABC на внешнюю биссектрису его угла A. Докажите, что отрезки B_1C и C_1B пересекаются на внутренней биссектрисе угла A.
- **6.** В трапеции ABCD на боковой стороне AB дана точка K. Через точку A провели прямую ℓ , параллельную прямой KC а через точку B прямую m, параллельную прямой KD. Докажите, что точка пересечения прямых ℓ и m лежит на стороне CD.
- 7. Прямая ℓ пересекает стороны AB,AD и диагональ AC параллелограмма ABCD в точках X,Y,Z соответственно. Докажите, что $\frac{AB}{AX} + \frac{AD}{AY} = \frac{AC}{AZ}$.