Ищем идеи

- 1. На сторонах AB и AC треугольника ABC выбраны точки P и Q соответственно такие, что AP=AQ. На стороне BC выбраны точки R и S (BR>BS) таким образом, что $\angle BRP=\angle BPS$ и $\angle CSQ=\angle CQR$. Докажите, что точки $P,\ Q,\ R,\ S$ лежат на одной окружности.
- **2.** На стороне AB равносторонней трапеции ABCD ($AD \parallel BC$) отметили точки E и F так, что в четырехугольник CDEF описанный. Докажите, что описанные окружности треугольников ADE и BCF касаются.
- 3. Пусть D середина меньшей дуги BC описанной окружности остроугольного треугольника ABC. Окружности ω_1 и ω_2 вписаны в треугольники BAD и CAD. Докажите, что одна из общих касательных к ним параллельна BC.
- 4. Точки M и N середины сторон AB и CD параллелограмма ABCD соответственно. Отрезки AN и DM пересекаются в точке E. На стороне BC отмечена точка F так, что четырехугольник MENF вписанный. Прямая AD вместе с лучами FM и NE образуют треугольник Δ_1 , а вместе с лучами ME и FN треугольник Δ_2 . Докажите, что описанные окружности треугольников Δ_1 и Δ_2 касаются.
- 5. Внутри параллелограмма ABCD взята такая точка P, что $\angle PDA = \angle PBA$. Пусть ω_1 вневписанная окружность треугольника PAB, лежащая напротив вершины A. Пусть ω_2 вписанная окружность треугольника PCD. Докажите, что одна из общих касательных к ω_1 и ω_2 параллельна AD.