Рациональное и не очень

- 1. Докажите, что следующие числа иррациональны:
 - (a) $\sqrt{2}$; (6) $1 + \sqrt[3]{2 + \sqrt{7 + 4\sqrt{2020}}}$; (B) $\sqrt{2} + \sqrt{3} + \sqrt{5}$; (r*) $\sqrt{2} + \sqrt{3} + \sqrt{5} + \sqrt{7} + \sqrt{11} + \sqrt{13}$.
- (a) Докажите, что любое рациональное число $\frac{p}{q}$ можно представить в ви-2. де бесконечной десятичной периодической дроби (возможно, с предпериодом).
 - (б) Докажите, что полученная десятичная дробь конечна тогда и только тогда, когда $q = 2^m 5^n$.
 - (в) Докажите, что если (q,10)=1, то предпериода нет.
- **3.** Докажите, что если число $a+b\sqrt{2}$, где a и b рациональны, является корнем многочленом с целыми коэффициентами, то и число $a-b\sqrt{2}$ является корнем этого многочлена.
- 4. Существуют ли иррациональные числа a и b такие, что число a^b рациональное?
- **5.** В числе $\alpha = 0.12457\dots n$ -я цифра после запятой равна цифре слева от запятой в числе $n\sqrt{2}$. Докажите, что α — иррациональное число.
- (a) Докажите, что $\cos n\varphi$ $(n \in \mathbb{N})$ представляется как многочлен от $\cos \varphi$, 6. причем если $T_n(x)$ — тот самый многочлен, где $x = \cos \varphi$, то

$$T_{n+1}(x) = 2x \cdot T_n(x) - T_{n-1}(x).$$

- (6) Докажите, что $\cos 20^{\circ}$ иррациональное число.
- (в) Докажите, что если $\cos\left(\frac{p}{q}\right)^{\circ}=\frac{m}{n}$, где $p,\,q,\,m,\,n\in\mathbb{Z},\,(m,n)=1,$ то nявляется степенью двойки (возможно, нулевой).
- (г) Докажите, что на самом деле $\frac{m}{n}$ может равняться только одному из чисел $0, \pm 1, \pm \frac{1}{2}$.
- (д) Выведите отсюда, что при $n \neq 4$ не существует правильного n-угольника с вершинами в узлах целочисленной решётки.