Изогональное сопряжение в треугольнике

Точки P и Q называются изогонально сопряженными относительно треугольника ABC, если прямые AP и AQ, BP и BQ, CP и CQ симметричны относительно биссектрис углов A, B, C треугольника соответственно.

- **1.** Касательные к описанной окружности треугольника ABC в точках A и C пересекаются в точке P. Точка Q симметрична точке B относительно середины отрезка AC. Докажите, что точки P и Q изогонально сопряжены.
- **2.** Внутри треугольника ABC взята точка P. Пусть Q центр окружности, проходящей через точки, симметричные P относительно сторон. Докажите, что P и Q изогонально сопряжены.
- **3. Педальная окружность.** Опустим из точки P перпендикуляры на стороны треугольника (или их продолжения) и рассмотрим окружность, проходящую через основания перпендикуляров. Докажите, что эта окружность совпадает с окружностью, построенной таким же образом для точки Q, изогонально сопряженной точке P.
- **4.** В трапеции ABCD боковая сторона CD перпендикулярна основаниям. Диагонали пересекаются в точке M. Точка S диаметрально противоположна M на описанной окружности треугольника CMD. Докажите, что $\angle BSC = \angle ASD$.
- **5.** AA_0 , BB_0 , CC_0 высоты треугольника ABC, M произвольная точка. A_1 точка, симметричная M относительно BC; аналогично определим точки B_1 , C_1 . Докажите, что прямые A_0A_1 , B_0B_1 , C_0C_1 пересекаются в одной точке.
- **6. Теорема Паскаля.** Шестиугольник ABCDEF вписан в окружность. Отрезки AC и BF пересекаются в точке X, отрезки AD и BE в точке Y, отрезки FD и CE в точке Z. Докажите, что точки X, Y, Z лежат на одной прямой.
- 7. Пусть H основание высоты из вершины A треугольника ABC и H_a точка, симметричная точке H относительно середины стороны BC. Касательные к описанной окружности треугольника ABC, проведенные в точках B и C, пересекаются в точке X. Перпендикуляр к XH_a , проведенный в точке H_a , пересекает прямые AB и AC в точках Y и Z соответственно. Докажите, что $\angle YXB = \angle ZXC$.
- **8.** Точки P, Q изогонально сопряжены в треугольнике ABC. W середина дуги BAC окружности (ABC). Прямая, которая проходит через точку P и параллельна AW пересекает стороны AB и AC в точках P_c , P_b соответственно. Прямая, которая проходит через точку Q и параллельна AW пересекает стороны AB и AC в точках Q_c , Q_b соответственно. Прямые WP и WQ повторно пересекают окружность (ABC) в точках X, Y соответственно. Докажите, что точки P_b , P_c , Q_b , Q_c , X, Y лежат на одной окружности.

Изогональное сопряжение в треугольнике

Точки P и Q называются изогонально сопряженными относительно треугольника ABC, если прямые AP и AQ, BP и BQ, CP и CQ симметричны относительно биссектрис углов A, B, C треугольника соответственно.

- **1.** Касательные к описанной окружности треугольника ABC в точках A и C пересекаются в точке P. Точка Q симметрична точке B относительно середины отрезка AC. Докажите, что точки P и Q изогонально сопряжены.
- **2.** Внутри треугольника ABC взята точка P. Пусть Q центр окружности, проходящей через точки, симметричные P относительно сторон. Докажите, что P и Q изогонально сопряжены.
- **3. Педальная окружность.** Опустим из точки P перпендикуляры на стороны треугольника (или их продолжения) и рассмотрим окружность, проходящую через основания перпендикуляров. Докажите, что эта окружность совпадает с окружностью, построенной таким же образом для точки Q, изогонально сопряженной точке P.
- **4.** В трапеции ABCD боковая сторона CD перпендикулярна основаниям. Диагонали пересекаются в точке M. Точка S диаметрально противоположна M на описанной окружности треугольника CMD. Докажите, что $\angle BSC = \angle ASD$.
- **5.** AA_0 , BB_0 , CC_0 высоты треугольника ABC, M произвольная точка. A_1 точка, симметричная M относительно BC; аналогично определим точки B_1 , C_1 . Докажите, что прямые A_0A_1 , B_0B_1 , C_0C_1 пересекаются в одной точке.
- **6. Теорема Паскаля.** Шестиугольник ABCDEF вписан в окружность. Отрезки AC и BF пересекаются в точке X, отрезки AD и BE в точке Y, отрезки FD и CE в точке Z. Докажите, что точки X, Y, Z лежат на одной прямой.
- 7. Пусть H основание высоты из вершины A треугольника ABC и H_a точка, симметричная точке H относительно середины стороны BC. Касательные к описанной окружности треугольника ABC, проведенные в точках B и C, пересекаются в точке X. Перпендикуляр к XH_a , проведенный в точке H_a , пересекает прямые AB и AC в точках Y и Z соответственно. Докажите, что $\angle YXB = \angle ZXC$.
- **8.** Точки P, Q изогонально сопряжены в треугольнике ABC. W середина дуги BAC окружности (ABC). Прямая, которая проходит через точку P и параллельна AW пересекает стороны AB и AC в точках P_c , P_b соответственно. Прямая, которая проходит через точку Q и параллельна AW пересекает стороны AB и AC в точках Q_c , Q_b соответственно. Прямые WP и WQ повторно пересекают окружность (ABC) в точках X, Y соответственно. Докажите, что точки P_b , P_c , Q_b , Q_c , X, Y лежат на одной окружности.