[ЦПМ, кружок по математике]

[2024-2025]

группа 10-1

Ю. Г. Арутюнов 10 марта 2025 г.

Круговые многочлены

Напоминание. Корнями n-ой степени из единицы называются комплексные корни многочлена x^n-1 . В тригонометрической записи они имеют вид $\varepsilon_k=\cos(\frac{2\pi k}{n})+i\sin(\frac{2\pi k}{n}),$ $1\leqslant k\leqslant n$. Первообразным корнем степени n из единицы будем называть корень если n — наименьшая степень в которой он даёт 1, т.е. ε_k , где (k,n)=1.

Определение. Круговым многочленом порядка *п* называется многочлен

$$\Phi_n(x) = \prod_{(k,n)=1} (x - \varepsilon_k)$$

- **0.** (а) Чему равна степень $\Phi_n(x)$?
 - **(б)** Выпишите в явном виде многочлены $\Phi_1(x), \Phi_2(x), \Phi_3(x), \Phi_4(x), \Phi_p(x)$, где p простое.
- **1.** (а) Докажите, что $x^n 1 = \prod_{n \in d} \Phi_d(x)$, где произведение берётся по всем натуральным делителям d числа n.
 - **(б)** Докажите, что $\Phi_n(x)$ многочлен с целыми коэффициентами.
- **2.** Найдите чему равно $\Phi_n(0)$ и $\Phi_n(1)$.
- **3.** Пусть n натуральное, p простое.
 - (a) Докажите, что если n : p, то $\Phi_{np}(x) = \Phi_n(x^p)$.
 - **(б)** Докажите, что если (n, p) = 1, то $\Phi_{np}(x) = \frac{\Phi_n(x^p)}{\Phi_n(x)}$
 - **(в)** Докажите, что если n нечётно, то $\Phi_{2n}(x) = \Phi_n(-x)$.
 - (г) Пусть a натуральное, причём (a, n) = 1. Докажите, что $\Phi_n(x^a) = \prod_{a:d} \Phi_{nd}(x)$.
- 4. Докажите, что все числа

10001, 100010001, 1000100010001, ...

являются составными.

5. Докажите, что число $2^{2^n} + 2^{2^{n-1}} + 1$ содержит в разложении на простые множители как минимум n простых чисел (возможно, совпадающих).

Важная лемма. Пусть n — натуральное, a — целое, p — простое, (n, p) = 1. Тогда $\Phi_n(a)$: p тогда и только тогда, когда a принадлежит показателю n по модулю p.

- 6. Цель этой задачи доказать важную лемму.
 - (a) Докажите, что если d показатель a по модулю p, то $\Phi_d(a)$ \vdots p.
 - **(б)** Докажите, что если степень вхождения p в a^n-1 больше, чем в a^d-1 , то $\frac{n}{d} \, \vdots \, p$.
 - (в) Докажите лемму.
- 7. Рассмотрите многочлен $\Phi_{p-1}(x)$ и поймите, что по модулю p существует первообразный корень.

- **8.** (Частный случай теоремы Дирихле). Рассмотрев многочлен $\Phi_n(x)$ докажите, что для каждого натурального n существует бесконечно много простых чисел вида kn+1.
- **9.** Пусть m, n натуральные, a целое. Пусть $(\Phi_m(a), \Phi_n(a)) = d > 1$.
 - **(a)** Докажите, что m/n степень некоторого простого p.
 - **(б)** Докажите, что d степень того же простого p.
- **10.** Докажите, что у числа в задаче 5 имеется как минимум *п различных* простых делителей.
- **11.** Пусть p_1, p_2, \dots, p_n различные нечётные простые. Докажите, что число $2^{p_1p_2\dots p_n}+1$ имеет как минимум $2^{2^{n-1}}$ делителей.