Основания двух биссектрис

- **0.** Пусть BL_B , CL_C биссектрисы треугольника ABC. Докажите, что для каждой точки на отрезке L_BL_C сумма расстояний от этой точки до прямых AB и AC равна расстоянию от нее до прямой BC.
- **1.** Внутри треугольника ABC находится точка T, расстояния от которой до сторон треугольника равны x, y, z. Найдите геометрическое место точек T таких, что из отрезков длинами x, y, z можно составить треугольник.
- **2.** Известно, что в треугольнике *ABC* точка пересечения медиан *M* принадлежит отрезку L_BL_C . Докажите, что в таком случае для высот треугольника *ABC* имеет место равенство $h_a = h_b + h_c$.
- 3. Около треугольника ABC описана окружность . Луч L_BL_C пересекает Ω в точке X. Докажите, что $\frac{1}{XB} = \frac{1}{XA} + \frac{1}{XC}$.
- **4.** Центр O описанной около треугольника ABC окружности лежит на отрезке L_BL_C . Докажите, что расстояние AH от вершины до ортоцентра треугольника ABC равно сумме радиусов описанной около треугольника ABC и вписанной в него окружностей.
- **5.** В треугольнике ABC прямая, проходящая через центры его описанной и вписанной окружностей, параллельна стороне BC. Докажите, что L_BL_C делит пополам высоту, проведенную из вершины A.
- **6.** Центр O описанной около треугольника ABC окружности лежит на отрезке L_BL_C . Докажите, что $r_a = R$, где r_a радиус вневписанной окружности треугольника ABC, касающейся стороны BC.