[ЦПМ, кружок по математике]

[2024-2025] группа 10-геом

А теперь можно и на задачах попрактиковаться.

А. Филатов

3 декабря

Счет в комплексных. Начало

Фундамент. Основная идея состоит в том, что есть однозначное соответствие между точками на плоскости и комплексными числами. Мы выбираем ноль и направление вещественной и мнимых осей. Тогда каждой точки плоскости соответствует комплексное число.

Суть. Умножение на комплексное число - это поворотная гомотетия.

Общие формулы. Условие типа $z \in \mathbb{R}$ равносильно $z = \overline{z}$.

- $|AB|^2 = (a-b)(\overline{a} \overline{b})$
- A,B,C коллинеарны тогда и только тогда, когда $\dfrac{a-b}{a-c} \in \mathbb{R}$
- $AB \parallel CD$ тогда и только тогда, когда $\dfrac{a-b}{c-d} \in \mathbb{R}$
- $\mathit{AB} \perp \mathit{CD}$ тогда и только тогда, когда $\dfrac{a-b}{c-d} \in i\mathbb{R}$
- $\angle A_1B_1C_1=\angle A_2B_2C_2$ тогда и только тогда, когда $\frac{a_1-b_1}{c_1-b_1}:\frac{a_2-b_2}{c_2-b_2}\in\mathbb{R}$
- A,B,C,D коцикличны тогда и только тогда, когда $\dfrac{a-c}{b-c}$: $\dfrac{a-d}{b-d} \in \mathbb{R}$
- Верны все формулы, которые верны для векторов, ведь комплексные числа это тоже векторы.

Т.к. мы часто пользуемся принадлежностью к \mathbb{R} , то нам надо будет работать с сопряженными векторами. А в этом нам хорошо помогает единичная окружность.

- **1.** Пусть Ω единичная окружность на комплексной плоскости. Тогда докажите формулы:
 - (а) $Z \in \Omega$ тогда и только тогда, когда $z\overline{z} = 1$.
 - (б) $AB \perp CD(A,B,C,D \in \Omega)$ тогда и только тогда, когда ab+cd=0.
 - (в) (Самая важная!) $Z \in AB(A, B \in \Omega)$ тогда и только тогда, когда $z + ab\overline{z} = a + b$.
 - (г) ZA касается $\Omega(A \in \Omega)$ тогда и только тогда, когда $z + a^2\overline{z} = 2a$.
 - (д) Z точка пересечения касательных к A и B к Ω тогда и только тогда, когда $z=\frac{2ab}{a+b}$.
 - **(e)** K основание перпендикуляра из Z на $AB(A,B\in\Omega)$ тогда и только тогда, когда $k=\frac{a+b+z-ab\overline{z}}{2}.$
 - (ж) H ортоцентр $ABC(A,B,C\in\Omega)$ тогда и только тогда, когда h=a+b+c.

2. Четырёхугольник *ABCD* вписан в окружность. Докажите, что ортоцентры треугольников *ABC*, *ABD*, *ACD* и *BCD* лежат на одной окружности.

- **3.** Прямая t касается описанной окружности треугольника ABC в точке B. K проекция ортоцентра ABC на t, L середина AC. Докажите, что треугольник BKL равнобедренный.
- **4.** (У кого-то уже было, но решите в комплах) Докажите, что середины трех отрезков, соединяющих проекции произвольной точки плоскости на пары противоположных сторон или диагоналей вписанного в окружность четырехугольника, лежат на одной прямой.
- **5.** Остроугольный неравнобедренный треугольник ABC вписан в окружность ω с центром O. Прямая AO вторично пересекает ω в точке A_1 . Касательная к ω , восстановленная в точке A_1 , пересекает BC в точке X. Прямая XO пересекает стороны AB и AC в точках P и Q. Докажите, что O середина PQ.
- **6.** На окружности ω отмечены две точки A и B. Касательные к ω к точкам A и B пересекаются в точке S. Хорда XY окружности ω проходит через середину M отрезка AB. Докажите, что $\angle XSM = \angle MSY$.
- **7.** В выпуклом четырёхугольнике ABCD углы при вершинах A, B, C равны. Докажите, что прямая Эйлера треугольника ABC проходит через D.

[ЦПМ, кружок по математике]

[2024-2025] группа 10-геом

А теперь можно и на задачах попрактиковаться.

А. Филатов

3 декабря

Счет в комплексных. Начало

Фундамент. Основная идея состоит в том, что есть однозначное соответствие между точками на плоскости и комплексными числами. Мы выбираем ноль и направление вещественной и мнимых осей. Тогда каждой точки плоскости соответствует комплексное число.

Суть. Умножение на комплексное число - это поворотная гомотетия.

Общие формулы. Условие типа $z \in \mathbb{R}$ равносильно $z = \overline{z}$.

- $|AB|^2 = (a-b)(\overline{a} \overline{b})$
- A,B,C коллинеарны тогда и только тогда, когда $\dfrac{a-b}{a-c} \in \mathbb{R}$
- $AB \parallel CD$ тогда и только тогда, когда $\dfrac{a-b}{c-d} \in \mathbb{R}$
- $\mathit{AB} \perp \mathit{CD}$ тогда и только тогда, когда $\dfrac{a-b}{c-d} \in i\mathbb{R}$
- $\angle A_1B_1C_1=\angle A_2B_2C_2$ тогда и только тогда, когда $\frac{a_1-b_1}{c_1-b_1}:\frac{a_2-b_2}{c_2-b_2}\in\mathbb{R}$
- A,B,C,D коцикличны тогда и только тогда, когда $\dfrac{a-c}{b-c}$: $\dfrac{a-d}{b-d} \in \mathbb{R}$
- Верны все формулы, которые верны для векторов, ведь комплексные числа это тоже векторы.

Т.к. мы часто пользуемся принадлежностью к \mathbb{R} , то нам надо будет работать с сопряженными векторами. А в этом нам хорошо помогает единичная окружность.

- **1.** Пусть Ω единичная окружность на комплексной плоскости. Тогда докажите формулы:
 - (а) $Z \in \Omega$ тогда и только тогда, когда $z\overline{z} = 1$.
 - (б) $AB \perp CD(A,B,C,D \in \Omega)$ тогда и только тогда, когда ab+cd=0.
 - (в) (Самая важная!) $Z \in AB(A, B \in \Omega)$ тогда и только тогда, когда $z + ab\overline{z} = a + b$.
 - (г) ZA касается $\Omega(A \in \Omega)$ тогда и только тогда, когда $z + a^2\overline{z} = 2a$.
 - (д) Z точка пересечения касательных к A и B к Ω тогда и только тогда, когда $z=\frac{2ab}{a+b}$.
 - **(e)** K основание перпендикуляра из Z на $AB(A,B\in\Omega)$ тогда и только тогда, когда $k=\frac{a+b+z-ab\overline{z}}{2}.$
 - (ж) H ортоцентр $ABC(A,B,C\in\Omega)$ тогда и только тогда, когда h=a+b+c.

2. Четырёхугольник *ABCD* вписан в окружность. Докажите, что ортоцентры треугольников *ABC*, *ABD*, *ACD* и *BCD* лежат на одной окружности.

- **3.** Прямая t касается описанной окружности треугольника ABC в точке B. K проекция ортоцентра ABC на t, L середина AC. Докажите, что треугольник BKL равнобедренный.
- **4.** (У кого-то уже было, но решите в комплах) Докажите, что середины трех отрезков, соединяющих проекции произвольной точки плоскости на пары противоположных сторон или диагоналей вписанного в окружность четырехугольника, лежат на одной прямой.
- **5.** Остроугольный неравнобедренный треугольник ABC вписан в окружность ω с центром O. Прямая AO вторично пересекает ω в точке A_1 . Касательная к ω , восстановленная в точке A_1 , пересекает BC в точке X. Прямая XO пересекает стороны AB и AC в точках P и Q. Докажите, что O середина PQ.
- **6.** На окружности ω отмечены две точки A и B. Касательные к ω к точкам A и B пересекаются в точке S. Хорда XY окружности ω проходит через середину M отрезка AB. Докажите, что $\angle XSM = \angle MSY$.
- **7.** В выпуклом четырёхугольнике ABCD углы при вершинах A, B, C равны. Докажите, что прямая Эйлера треугольника ABC проходит через D.