Разнобой по тч

Напомним, что $\mathit{Символом}$ $\mathit{Лежандра}$ $\binom{a}{p}$ называется число, равное 1, если a — квадратичный вычет по модулю p; равное -1, если a — квадратичный невычет по модулю p и 0, если a кратно p.

 Π ервообразным корнем по модулю n называется такой остаток g при делении на n, что его показатель равен $\varphi(n)$.

Напомним некоторые свойства символа Лежандра и первообразных корней:

$$\bullet \ \left(\frac{ab}{p}\right) = \left(\frac{a}{p}\right) \left(\frac{b}{p}\right)$$

$$\bullet \ \left(\frac{a}{p}\right) \equiv a^{\frac{p-1}{2}} \ (\text{mod } p)$$

$$\bullet \left(\frac{2}{p}\right) = (-1)^{\frac{p^2 - 1}{8}} \pmod{p}$$

- Первообразные корни существуют только по модулям 2, 4, p^a и $2p^a$, p>2
- **1.** Сколько существует первообразных корней по модулю n?
- **2.** Решите сравнение $x^2 + 6x + 7 \equiv 0 \pmod{31}$.
- **3.** Докажите, что многочлен $x^2 + 1$ приводим над полем \mathbb{Z}_p , где p = 4k + 1.
- **4.** Докажите, что если $x^2 + y^2$ делится на p = 4k + 3, то x и y делятся на p. (Теорема Жирара)
- **5.** Докажите, что число $\frac{x^2+1}{y^2-5}$ никогда не является целым при натуральных x и y, больших 2.
- **6.** Докажите, что у числа $2^n + 1$ не может быть простого делителя вида 8k + 7.
- 7. Вычислите $\left(\frac{5}{29}\right)$.
- 8. Для целых a и b выполнено, что $2^a \equiv 2^b \pmod{101}$. Докажите, что $a \equiv b \pmod{100}$.
- 9. Найдите все двузначные числа n=10a+b (где a и b цифры) такие, что для всех натуральных k верно $n\mid (k^a-k^b).$
- **10.** Пусть $p\geqslant 3$ простое. Найдите все функции $f:\mathbb{Z}\to\mathbb{Z}$ такие, что для $m\equiv n\pmod p$ f(m)=f(n) и для всех m,n f(mn)=f(m)f(n).
- **11.** Вычислите для каждого $p \geqslant 3$ $f(p) = \frac{1}{2} \left\{ \frac{F(p)}{p} \right\}$, где $F(p) = \sum_{k=1}^{(p-1)/2} k^{120}$.