Вспомиаем гомотетию

- 1. Пусть A одна из двух различных точек пересечения двух неравных окружностей ω_1 и ω_2 с центрами O_1 и O_2 соответственно. Одна из общих касательных к окружностям касается ω_1 в точке P_1 и ω_2 в точке P_2 , а другая касается ω_1 в точке Q_1 и ω_2 в точке Q_2 . Пусть M_1 середина P_1Q_1 , а M_2 середина P_2Q_2 . Докажите, что $\angle O_1AO_2 = \angle M_1AM_2$.
- **2.** Дан треугольник ABC. Окружности ω_a , ω_b и ω_c вписаны в углы $\angle BAC$, $\angle ABC$ и $\angle BCA$ соответственно и касаются друг друга попарно (внешним образом). Пусть A_0 , B_0 и C_0 точки касания ω_b и ω_c ; ω_a и ω_c ; ω_a и ω_b . Пусть $A_1 = BC \cap B_0C_0$, $B_1 = AC \cap A_0C_0$ и $C_1 = AB \cap A_0B_0$. Докажите, что A_1 , B_1 и C_1 лежат на одной прямой.
- 3. На описанной окружности треугольника ABC выбирается хорда XY так, что ее середина лежит на окружности Эйлера треугольника ABC. Докажите, что окружности Эйлера для всевозможных треугольников AXY касаются фиксированной окружности (не зависящей от выбора хорды XY).
- **4.** Пусть ABC треугольник с описанной окружностью ω и центром I вписанной окружности. Пусть прямая l пересекает AI, BI, и CI в точках D, E и F соответственно, все они отличны от A, B, C и I.
 - (а) Пусть l_a , l_b и l_c прямые симметричные l относительно серединных перпендикуляров к AD, BE и CF. Докажите, что l_a , l_b и l_c пересекаются на ω .
 - (b) Докажите, что описанная окружность треугольника, образованного серединными перпендикулярами к $AD,\,BE$ и $CF,\,$ касается $\omega.$
- 5. Пусть ω окружность с центром O, и пусть T точка вне ω . Точки B и C лежат на ω так, что TB и TC касаются ω . Пусть I инцентр $\triangle OBC$. Два круга внутри $\triangle TBC$ касаются внешним образом ω и касаются внешним образом друг друга в точке J. Учитывая, что один из этих кругов касается TB в точке K, а другой касается TC в точке H, докажите, что четырехугольники BKJI и CHJI вписанные.