Повторение — мать

- 1. Не пересекающиеся окружности ω_1 и ω_2 видны из точки S под равными углами. Прямые SX и SY касаются ω_1 и ω_2 в точках X и Y соответственно, причем обе окружности лежат в одной и той же полуплоскости относительно каждой из этих прямых. Прямая XY вторично пересекает окружности в точках Z и T соответственно. Докажите, что XZ = YT.
- **2.** На сторонах треугольника ABC построены квадраты ABC_1D_1 и A_2BCD_2 . Доказать, что точка пересечения AD_2 и CD_1 принадлежит высоте треугольника ABC с вершины B.
- 3. Пусть H ортоцентр остроугольного треугольника ABC, Ω окружность описанная около ABC. Окружность с диаметром AH пересекает описанную окружность ABC в точке P. Пусть Q на Ω такова, что $QP \parallel BC$. Прямая AH вторично пересекает Ω в точке R. Докажите, что RQ делит BC пополам.
- **4.** Продолжения боковых сторон AB и CD трапеции ABCD пересекаются в точке Q, а диагонали в точке P. Точка S на отрезке BC такова, что AS = DS. Докажите, что $\angle PSB = \angle QSB$.
- **5.** На стороне BC треугольника ABC выбраны точки P и Q. Докажите, что линия центров вписанных окружностей треугольников BAP и CAQ и линия центров вписанных окружностей треугольников BAQ и CAP пересекаются на BC.
- **6.** Пусть ABC и DEF два треугольника, которые имеют общую вписанную окружность ω и описанную окружность γ . Пусть L точка касания EF с ω , и определим K аналогично для BC. Обозначим N как пересечение AL и γ , и M как пересечение DK и γ . Докажите, что прямые AM, EF, BC и ND пересекаются в одной точке.