Аффинные преобразования

Определение. Преобразование плоскости называется *аффинным*, если оно взаимно однозначно (биективно), непрерывно и образом любой прямой является прямая.

- **1.** Докажите, что при аффинном преобразовании параллельные прямые переходят в параллельные.
- **2.** Докажите, что если $\overrightarrow{AB} = \overrightarrow{CD}$, то $\overrightarrow{A'B'} = \overrightarrow{C'D'}$, где A', B', C', D' образы точек A, B, C, D соответственно при аффинном преобразовании.

В качестве следствия получаем, что аффинное преобразование корректно определено на множестве всех векторов плоскости.

3. (Линейность) Докажите, что (а) $(\vec{u} + \vec{v})' = \vec{u}' + \vec{v}'$; (б) $(q \cdot \vec{u})' = q \cdot \vec{u}'$ для любого $q \in \mathbb{Q}$; (в) $(\lambda \cdot \vec{u})' = \lambda \cdot \vec{u}'$ для любого $\lambda \in \mathbb{R}$ (в последнем пункте используйте непрерывность).

Следствие: аффинное преобразование на каждой прямой сохраняет отношения отрезков.

4. *Репером* называется набор из точки и двух неколлинеарных векторов. На плоскости даны два репера. Докажите, что существует единственное аффинное преобразование, переводящее один репер в другой.

Эта задача вместе со свойством линейности позволяет дать следующее эквивалентное определение аффинного преобразования: преобразование f называется $a\phi\phi$ инным, если на плоскости существуют две декартовы не обязательно прямоугольные системы координат такие, что координаты произвольной точки A в первой системе совпадают с координатами точки f(A) во второй системе.

 (Координатное описание) На плоскости определена декартова не обязательно прямоугольная система координат. Докажите, что класс преобразований, заданных формулами вида

$$x' = ax + by + x_0,$$
 где $ad - bc \neq 0,$

совпадает с классом аффинных преобразований.

6. (а) Докажите, что аффинное преобразование сохраняет отношения площадей двух треугольников, у которых есть пара параллельных сторон. (б) Докажите, что аффинное преобразование сохраняет отношения площадей любых двух треугольников. (в) Докажите, что аффинное преобразование сохраняет отношения площадей любых двух многоугольников.

Теорема. Любое взаимно однозначное отображение плоскости в себя, сохраняющее коллинеарность любых трёх коллинеарных точек, на самом деле аффинно.

Две фигуры называются *аффинно эквивалентными*, если одну из них можно перевести в другую некоторым аффинным преобразованием.

- 7. Докажите, что любые два треугольника аффинно эквивалентны.
- **8.** Докажите, что два четырехугольника аффинно эквивалентны тогда и только тогда, когда диагонали этих четырехугольников делятся точками пересечения в соответственно равных отношениях.
- 9. В трапеции ABCD на диагоналях AC и BD отметили такие точки P и Q, что $BP \parallel CD$ и $CQ \parallel AB$. Докажите, что $PQ \parallel BC$.
- **10.** Через каждую вершину треугольника *ABC* проведены две прямые, делящие противоположную сторону на три равные части. Докажите, что три прямые, соединяющие противоположные вершины полученного шестиугольника, пересекаются в одной точке.
- 11. На сторонах BC, CA, AB треугольника ABC отмечены пары точек A_1 и A_2 , B_1 и B_2 , C_1 и C_2 соответственно. Известно, что $A_1B_2 \parallel AB$, $B_1C_2 \parallel BC$, $C_1A_2 \parallel CA$. Докажите, что треугольники $A_1B_1C_1$, $A_2B_2C_2$ равновелики.
- 12. На сторонах AB, BC и CD параллелограмма ABCD взяты точки K, L и M соответственно, делящие эти стороны в одинаковых отношениях. Через точки B, C, D проведены прямые b, c, d, параллельные прямым KL, KM, ML соответственно. Докажите, что прямые b, c, d проходят через одну точку.
- 13. Про выпуклый пятиугольник ABCDE известно, что каждая его сторона параллельна одной из его диагоналей. Прямая ℓ_A соединяет вершину A с точкой пересечения отрезков BD и CE, аналогично определены прямые ℓ_B , ℓ_C , ℓ_D , ℓ_E . Докажите, что прямые ℓ_A , ℓ_B , ℓ_C , ℓ_D , ℓ_E имеют общую точку.
- Докажите, что если у выпуклого пятиугольника каждая сторона параллельна одной из его диагоналей, то его можно аффинным преобразование перевести в правильный.
- **15.** Дан выпуклый шестиугольник *ABCDEF*. Докажите, что отрезки, соединяющие середины противоположных сторон, пересекаются в одной точке тогда и только тогда, когда треугольники *ACE* и *BDF* равновелики.