Разнобой

Алгебра

- 1. Последовательность (a_n) удовлетворяет соотношениям $a_1 > 10$ и $a_n = a_{n-1} + (n, a_{n-1})$ при n > 1. Известно, что в этой последовательности есть член, в два раза больший своего номера. Докажите, что таких членов бесконечно много.
- **2.** Докажите, что все стозначные числа можно умножить на одно и то же натуральное число так, чтобы суммы цифр всех произведений были различными.
- **3.** Дано бесконечное множество натуральных чисел M. Известно, что для любых двух различных чисел $a,b\in M$ в множестве M также содержится хотя бы одно из чисел a^b-2 и a^b+2 . Докажите, что в M содержится хотя бы одно составное число.

Комбинаторика

- **4.** На шахматной доске стоят k ладей. Известно, что каждая клетка, на которой не стоит ладья, бъётся хотя бы тремя ладьями. Найдите наименьшее возможное значение k. (Ладья бъёт клетку, если они находятся в одной строке или одном столбце, а также между ними нет других ладей.)
- 5. Дан выпуклый 43-угольник. Все его стороны и диагонали покрасили в синий и красный цвета. При этом в каждой вершине сходися 22 синих отрезка и 20 красных. Известно, что образовалось ровно 2022 треугольника, все стороны которых синие. Сколько образовалось треугольников, у которых все стороны красные?
- 6. Давид нарисовал на листочке 1000 равных окружностей. Оказалось, что никакие две окружности не касаются друг друга, и что каждая окружность пересекается хотя бы с тремя другими. Артем посчитал, сколько точек принадлежат хотя бы двум окружностям. Какое наименьшее число могло получиться у Артема?

Геометрия

- 7. Окружности S_1 и S_2 с центрами O_1 и O_2 соответственно пересекаются в точках A и B. Касательные к S_1 и S_2 в точке A пересекают отрезки BO_2 и BO_1 в точках K и L соответственно. Докажите, что KL параллельно O_1O_2 .
- 8. Через точку K, лежащую вне окружности ω , проведены касательные KB и KD к этой окружности (B и D –точки касания) и прямая, пересекающая окружность в точках A и C. Биссектриса угла ABC пересекает отрезок AC в точке E и окружность ω в точке F. Докажите, что $\angle FDE = 90^{\circ}$.
- **9.** В треугольнике ABC проведена биссектриса BB_1 . Перпендикуляр из B_1 на BC пересекает дугу BC описанной окружности треугольника ABC в точке K. Перпендикуляр из B на AK пересекает AC в точке L. Докажите, что точки K, L и середина дуги AC, не содержащей точку B, лежат на одной прямой.