Отборочная олимпиада

- **Задача 1.** В клетки таблицы 5×5 вписываются k двоек и 25-k единиц. Известно, что можно вписать цифры так, чтобы сумма пяти цифр в каждой строке была простым числом. Однако, при любой такой расстановке хотя бы одна сумма пяти цифр в столбце обязательно будет составным числом. Чему равно k? Укажите все возможные варианты.
- **Задача 2.** Площадь прямоугольного треугольника с целыми сторонами называется $nu\phi$ агоровым числом. Докажите, что для любого натурального n>100 существует пифагорово число, находящееся между n и 2n.
- Задача 3. Дан параллелограмм ABCD, в котором угол A тупой. Взяли произвольную точку P на диагонали BD. Окружность с центром P, проходящая через A, повторно пересекает AD и AB в точках Yи X соответственно. Прямая AP пересекает BC и CD в точках Q и R соответственно. Докажите, что $\angle XPY = \angle XQY + \angle XRY$.
- **Задача 4.** Докажите, что существует натуральное число n, имеющее больше 2023 делителей d, удовлетворяющих условию $\sqrt{n} \leqslant d \leqslant 1,01\sqrt{n}$.
- Задача 5. В треугольнике ABC провели описанную окружность ω и ее центр O. Точка A_1 является серединой отрезка BC. Луч AA_1 повторно пересекает ω в точке A_2 . Точка Q_a является основанием перпендикуляра из A_1 на прямую AO. Точка P_a на прямой Q_aA_1 такова, что $P_aA_2 \perp A_2O$. Точки P_b и P_c определяются аналогично. Докажите, что точки P_a , P_b и P_c лежат на одной прямой.
- **Задача 6.** В графе нет треугольников и для каждого $0 \le k \le 100$ в графе есть вершина степени k. Какое наименьшее количество вершин может быть в этом графе?