[2021-2022] группа: 11 КЛАСС 7 апреля 2022 г.

Геометрический разнобой

- 1. Диагонали четырёхугольника *ABCD*, вписанного в окружность с центром в точке *O*, пересекаются в точке *M*. Описанная окружность треугольника *ABM* пересекает стороны *AD* и *BC* в точках *N* и *K* соответственно. Докажите, что четырёхугольники *NOMD* и *KOMC* имеют равные площади.
- 2. Дана трапеция ABCD с основаниями AD и BC, в которой ∠ABC > 90°. На боковой стороне AB отмечена точка M. Обозначим через O_1 и O_2 центры описанных окружностей треугольников MAD и MBC соответственно. Описанные окружности треугольников MO_1D и MO_2C вторично пересекаются в точке N. Докажите, что прямая O_1O_2 проходит через точку N.
- 3. Дан тетраэдр ABCD, в котором выполняется равенство $\angle BAC + \angle BAD = \angle ABC + \angle ABD = 90^\circ$. Пусть O цетнр описанной окружности треугольника ABC, M середина отрезка CD. Докажите что прямые AB и MO перпендикулярны.
- 4. В остроугольном треугольнике ABC проведены высоты BB_1 и CC_1 . Биссектрисы углов BB_1C и CC_1B пересекаются в точке X и пересекают сторону BC в точках D и E соответственно. Докажите, что прямая AX проходит через вторую точку пересечения описанных окружностей треугольников BXE и CXD.
- 5. Дан выпуклый четырехугольник *ABCD*. Описанная окружность треугольника *ABC* пересекает стороны *AD* и *DC* в точках *P* и *Q* соответственно. Описанная окружность треугольника *ADC* пересекает стороны *AB* и *BC* в точках *S* и *R* соответственно. Оказалось, что четырехугольник *PQRS* параллелограмм. Докажите, что *ABCD* также параллелограмм.
- 6. Дан четырёхугольник ABCD, в котором $\angle B = \angle D = 90^\circ$. На отрезке AB выбрана точка M такая, что AD = AM. Лучи DM и CB пересекаются в точке N. Точки H и K основания перпендикуляров, опущенных из точек D и C на прямые AC и AN соответственно. Докажите, что $\angle MHN = \angle MCK$.
- 7. На сторонах AB и BC неравнобедренного треугольника ABC нашлись такие точки P и Q соответственно, что AP = PQ = QC. Касательная к описанной окружности треугольника ABC в точке B пересекает прямую PQ в точке R. Докажите, что R равноудалена от B и центра I вписанной в треугольник PBQ окружности.
- 8. Точки B_0 середина стороны AC треугольника ABC, точка B_1 середина дуги AC, не содержащей точку B. Обозначим через ω_b окружность, построенную на отрезке A_0A_1 как на диаметре. Аналогично определим окружности ω_a и ω_c . Докажите, что длины общей внешней касательной окружностей ω_a и ω_b и общей внешней касательной окружностей ω_a и ω_c равны.
- Дана четырёхугольная пирамида SABCD. Диагонали основания AC и BD перпендикулярны и пересекаются в точке P. Оказалось, что SP — высота пирамиды. Докажите, что точки пересечения высот боковых граней лежат в одной плоскости.
- **10.** Треугольник ABC (AB > BC) вписан в окружность Ω . На сторонах AB и BC выбраны точки M и N соответственно так, что AM = CN. Прямые MN и AC пересекаются в точке K. Пусть P центр вписанной окружности треугольника AMK, а Q центр вневписанной окружности треугольника CNK, касающейся стороны CN. Докажите, что середина дуги ABC окружности Ω равноудалена от точек P и Q.

[ЦПМ, кружок по математике, 11 класс]

[2021-2022] группа: 11 КЛАСС

Геометрический разнобой

1. Диагонали четырёхугольника ABCD, вписанного в окружность с центром в точке O, пересекаются в точке M. Описанная окружность треугольника ABM пересекает стороны AD и BC в точках N и K соответственно. Докажите, что четырёхугольники NOMD и KOMC имеют равные площади.

7 апреля 2022 г.

- 2. Дана трапеция ABCD с основаниями AD и BC, в которой ∠ABC > 90°. На боковой стороне AB отмечена точка M. Обозначим через O_1 и O_2 центры описанных окружностей треугольников MAD и MBC соответственно. Описанные окружности треугольников MO_1D и MO_2C вторично пересекаются в точке N. Докажите, что прямая O_1O_2 проходит через точку N.
- 3. Дан тетраэдр ABCD, в котором выполняется равенство $\angle BAC + \angle BAD = \angle ABC + \angle ABD = 90^\circ$. Пусть O цетнр описанной окружности треугольника ABC, M середина отрезка CD. Докажите что прямые AB и MO перпендикулярны.
- **4.** В остроугольном треугольнике ABC проведены высоты BB_1 и CC_1 . Биссектрисы углов BB_1C и CC_1B пересекаются в точке X и пересекают сторону BC в точках D и E соответственно. Докажите, что прямая AX проходит через вторую точку пересечения описанных окружностей треугольников BXE и CXD.
- 5. Дан выпуклый четырехугольник ABCD. Описанная окружность треугольника ABC пересекает стороны AD и DC в точках P и Q соответственно. Описанная окружность треугольника ADC пересекает стороны AB и BC в точках S и R соответственно. Оказалось, что четырехугольник PQRS параллелограмм. Докажите, что ABCD также параллелограмм.
- 6. Дан четырёхугольник ABCD, в котором $\angle B = \angle D = 90^{\circ}$. На отрезке AB выбрана точка M такая, что AD = AM. Лучи DM и CB пересекаются в точке N. Точки H и K основания перпендикуляров, опущенных из точек D и C на прямые AC и AN соответственно. Докажите, что $\angle MHN = \angle MCK$.
- 7. На сторонах AB и BC неравнобедренного треугольника ABC нашлись такие точки P и Q соответственно, что AP = PQ = QC. Касательная к описанной окружности треугольника ABC в точке B пересекает прямую PQ в точке R. Докажите, что R равноудалена от B и центра I вписанной в треугольник PBQ окружности.
- 8. Точки B_0 середина стороны AC треугольника ABC, точка B_1 середина дуги AC, не содержащей точку B. Обозначим через ω_b окружность, построенную на отрезке A_0A_1 как на диаметре. Аналогично определим окружности ω_a и ω_c . Докажите, что длины общей внешней касательной окружностей ω_a и ω_b и общей внешней касательной окружностей ω_a и ω_c равны.
- 9. Дана четырёхугольная пирамида *SABCD*. Диагонали основания *AC* и *BD* перпендикулярны и пересекаются в точке *P*. Оказалось, что *SP* высота пирамиды. Докажите, что точки пересечения высот боковых граней лежат в одной плоскости.
- 10. Треугольник ABC (AB > BC) вписан в окружность Ω . На сторонах AB и BC выбраны точки M и N соответственно так, что AM = CN. Прямые MN и AC пересекаются в точке K. Пусть P центр вписанной окружности треугольника AMK, а Q центр вневписанной окружности треугольника CNK, касающейся стороны CN. Докажите, что середина дуги ABC окружности Ω равноудалена от точек P и Q.