группа: 10-1 и 10-2 12 мая 2022 г.

Аффинная стереометрия

- **1.** Точки A_1 , B_1 , C_1 , D_1 середины рёбер SA, SB, SC, SD пирамиды SABCD соответственно. Известно, что отрезки AC_1 , BD_1 , CA_1 , DB_1 проходят через одну точку и имеют равные длины. Докажите, что ABCD прямоугольник.
- **2.** Дан тетраэдр *ABCD*.
 - (a) Докажите, что отрезки, соединяющие вершины с точками пересечения медиан противоположных граней, пересекаются в одной точке (назовём её G) и делятся ей в отношении 3:1, считая от вершины.
 - **(6)** Докажите, что отрезки, соединяющие середины противоположных рёбер, также проходят через G и делятся ей пополам.
- **3. Теорема Менелая.** На рёбрах AB, BC, CD, DA пространственной неплоской ломаной ABCD отмечены точки K, L, M, N соответственно. Докажите, что K, L, M, N лежат в одной плоскости тогда и только тогда, когда выполнено соотношение

$$\frac{\overline{AK}}{\overline{KB}} \cdot \frac{\overline{BL}}{\overline{LC}} \cdot \frac{\overline{CM}}{\overline{MD}} \cdot \frac{\overline{DN}}{\overline{NA}} = 1.$$

- **4.** Четыре сферы касаются друг друга внешним образом. Соединим точку касания двух из них с точкой касания двух оставшихся. Докажите, что три построенных (выбирая разные разбиения сфер на пары) отрезка пересекаются в одной точке.
- **5.** Тетраэдр ABCD вписан в сферу с центром в точке O. Пусть ℓ_A прямая, соединяющая точку пересечения медиан грани BCD с точкой, симметричной A относительно O. Аналогично определены прямые ℓ_B , ℓ_C , ℓ_D .
 - **(a)** Докажите, что прямые $\ell_A, \ell_B, \ell_C, \ell_D$ пересекаются в одной точке (назовём её X).
 - **(6)** Докажите, что прямая, соединяющая X с серединой ребра AB, перпендикулярна CD.
- **6.** Пусть A_1 , B_1 , C_1 , D_1 соответственно середины рёбер SA, SB, SC, SD четырёхугольной пирамиды SABCD. Известно, что пространственные четырёхугольники ABC_1D_1 , A_1BCD_1 , A_1B_1CD , AB_1C_1D являются плоскими и имеют равные площади. Докажите, что ABCD ромб.
- **7.** Докажите, что плоскость, проходящая через середины противоположных рёбер тетраэдра, делит его на две части равного объёма.
- 8. Пятигранник $ABCA_1B_1C_1$ имеет две треугольные грани ABC и $A_1B_1C_1$ и три грани выпуклые четырёхугольники ABB_1A_1 , BCC_1A_1 , CAA_1C_1 , причём его рёбра AA_1 , BB_1 , CC_1 параллельны (кажется, это называется косоусечённой призмой). Пусть P и P_1 точки пересечения троек плоскостей A_1BC , AB_1C , ABC_1 и AB_1C_1 , A_1BC_1 , A_1B_1C соответственно. Докажите, что $PP_1 \parallel AA_1$.