[2020-2021] группа: 8 КЛАСС 23 января 2021 г.

Немного о многочленах

В этом листке мы работаем с многочленами от одной переменной с вещественными коэффициентами.

Теорема Безу. Остаток многочлена f(x) при делении на x - a равен f(a).

Следствие 1. Если f(a) = 0, то f(x) = (x - a)g(x) для некоторого многочлена g.

Следствие 2. Многочлен степени n имеет не более n корней.

Следствие 3 (теорема Виета для кубического многочлена). Если $f(x) = x^3 - px^2 + qx - r$ — кубический многочлен с корнями a, b, c, то

$$p = a + b + c$$
, $q = ab + bc + ca$, $r = abc$.

Полезная мысль. Первое, что тянет сделать, когда вы видите слово «многочлен» — это написать что-то в виде $f(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0$. В подавляющем большинстве случаев (хотя и не во всех) это *плохая идея*. Гораздо полезнее другой подход:

если вы видите многочлен, постарайтесь или найти его корни и сравнить количество корней и степень многочлена, или разложить многочлен на множители.

Если в задаче априори нет многочлена, стоит попытаться его создать, переписав условие в терминах этого многочлена. В этом часто помогает теорема Виета.

- **1.** Можно ли подобрать три действительных числа так, чтобы их сумма была равна числу $a \neq 0$, сумма попарных произведений была равна числу a^2 , а произведение равно числу a^3 ?
- **2.** Многочлен $x^3 + px^2 + qx + r$ имеет на интервале (0, 2) три корня. Докажите, что -2 .
- 3. Пусть f квадратный трехчлен. Числа $p,\,q,\,r$ выбраны так, что выполнены равенства

$$f(p) = q + r, \quad f(q) = r + p, \quad f(r) = p + q.$$

Докажите, что среди чисел p, q, r есть одинаковые.

4. Пусть P, Q и R — приведенные квадратные трехчлены и $p_{1,2}$, $q_{1,2}$, $r_{1,2}$ — их корни. Известно, что $p_1 \neq p_2$, $q_1 \neq q_2$, $r_1 \neq r_2$ и

$$(P+Q)(r_1) = (P+Q)(r_2), \quad (Q+R)(p_1) = (Q+R)(p_2), \quad (R+P)(q_1) = (R+P)(q_2).$$

Докажите, что

$$p_1 + p_2 = q_1 + q_2 = r_1 + r_2$$
.

- **5.** Вещественные числа a, b, c таковы, что a+b+c>0, ab+bc+ca>0 и abc>0. Докажите, что числа a, b, c положительны.
- **6.** Параболы, заданные уравнениями $y = x^2 a$ и $x = y^2 b$, пересекаются в четырех различных точках $P_i(x_i, y_i)$ (где i = 1, ..., 4). Вычислите значение выражения

$$(x_1 + x_2)(x_1 + x_3)(x_1 + x_4).$$

- **7.** Множество, состоящее из миллиона последовательных натуральных чисел, назовем *необычным*, если его можно разбить на два подмножества, произведения элементов в которых равны. Конечно или бесконечно количество необычных множеств?
- **8.** Натуральные числа a, b, c, d, e и f таковы, что число S = a + b + c + d + e + f делит числа abc + def и ab + bc + ca de ef fd. Докажите, что число S составное.
- **9.** Уравнение $x^4 ax^3 + bx^2 ax + d = 0$ имеет четыре различных вещественных корня x_i , причем все корни лежат на отрезке [1/2, 2]. Найдите наибольшее значение выражения

$$\frac{(x_1+x_2)(x_1+x_3)x_4}{(x_4+x_2)(x_4+x_3)x_1}.$$

10. Вещественные числа a, b, c, d, по модулю большие 1, таковы, что

$$a + b + c + d + abc + bcd + cda + abd = 0.$$

Докажите, что

$$\frac{1}{a-1} + \frac{1}{b-1} + \frac{1}{c-1} + \frac{1}{d-1} > 0.$$

11. Дан кубический многочлен f(x). Назовем циклом такую тройку различных чисел (a,b,c), что

$$f(a) = b$$
, $f(b) = c$, $f(c) = a$.

Известно, что нашлись восемь циклов (a_i,b_i,c_i) , i=1,2,...,8, в которых участвуют 24 различных числа. Докажите, что среди восьми чисел вида $a_i+b_i+c_i$ есть хотя бы три различных.