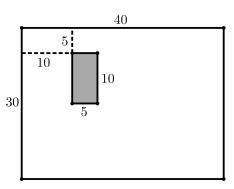
Начинающие. Решения

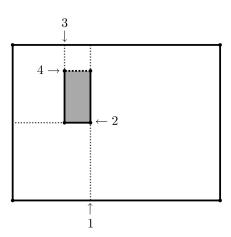
1. На рисунке изображен лист бумаги размером 40×30 , внутри которого закрашен серый прямоугольник размером 10×5 . Мы хотим вырезать серый прямоугольник из листа, используя четыре прямолинейных разреза. Каждым таким разрезом мы режем кусок бумаги от края до края, оставляем себе только часть, содержащую серый прямоугольник, и продолжаем резать уже её. Наша задача состоит в том, чтобы суммарная длина разрезов была как можно меньше. Как достичь этой цели, и какова минимальная суммарная длина разрезов? Укажите соответствующие разрезы и напишите их суммарную длину. Обосновывать ответ не нужно.



(Morteza Saghafian)

Ответ: 65.

Решение. Пример правильных разрезов показан на рисунке.



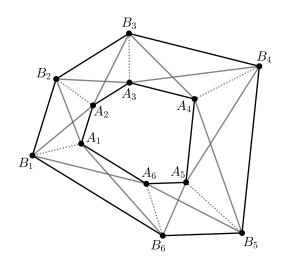
2. Выпуклый шестиугольник $A_1A_2A_3A_4A_5A_6$ лежит внутри выпуклого шестиугольника $B_1B_2B_3B_4B_5B_6$, причем

$$A_1A_2 \parallel B_1B_2, A_2A_3 \parallel B_2B_3, \ldots, A_6A_1 \parallel B_6B_1.$$

Оказалось, что шестиугольники $A_1B_2A_3B_4A_5B_6$ и $B_1A_2B_3A_4B_5A_6$ являются несамопересекающимися. Докажите, что их площади равны.

(Mahdi Etesamifard, Hirad Aalipanah)

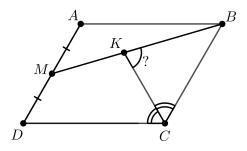
Решение. Разделим фигуру между двумя шестиугольниками на 6 трапеций, как показано на рисунке. Для каждой трапеции легко видеть, что треугольники, имеющие одинаковую площадь (например, $\triangle B_1 A_1 A_2$ и $\triangle B_2 A_1 A_2$), принадлежат каждый своему шестиугольнику. Следовательно, если мы сложим площади этих треугольников и прибавим к ним общую площадь (площадь шестиугольника $A_1 A_2 A_3 A_4 A_5 A_6$), то получим, что площади исходных шестиугольников равны.



3. На рисунке изображен параллелограмм АВСД. Известно, что

$$\angle D = 60^{\circ}, AD = 2, AB = \sqrt{3} + 1.$$

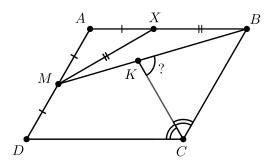
Точка M — середина отрезка AD. Отрезок CK является биссектрисой угла C. Найдите величину угла CKB.



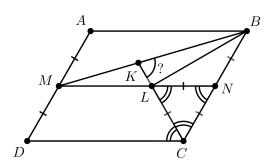
(Mahdi Etesamifard)

Решение 1. Пусть X — точка на стороне AB такая, что AX = 1 и $XB = \sqrt{3}$. Поскольку $\angle MAX = 120^\circ$, то $MX = \sqrt{3}$ (например, можно опустить высоту из вершины A и воспользоваться теоремой Пифагора). Тогда $\angle MBX = 15^\circ$, поскольку в равнобедренном треугольнике MXB внешний угол X равен 30° , и $\angle CBK = 45^\circ$. Отсюда

$$\angle CKB = 180^{\circ} - 60^{\circ} - 45^{\circ} = 75^{\circ}.$$



Решение 2. Пусть N- середина стороны BC. Обозначим точку пересечения отрезков MN и CK через L. Ясно, что треугольник CNL равносторонний. Отсюда LN=CN=NB=1, то есть треугольник BCL прямоугольный. По теореме Пифагора $BL=\sqrt{3}$. С другой стороны, $ML=\sqrt{3}$ и $\angle BLN=30^\circ$. В равнобедренном треугольнике MLB угол $\angle LBM$ равен 15° , поэтому $\angle CBK=30^\circ+15^\circ=45^\circ$. Тогда $\angle CKB=180^\circ-60^\circ-45^\circ=75^\circ$.

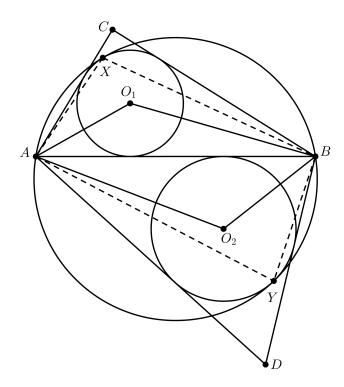


4. На плоскости расположена окружность ω . Две окружности с центрами O_1 и O_2 касаются ω и лежат внутри неё. Хорда AB окружности ω касается обеих окружностей, причем окружности лежат по разные стороны относительно хорды. Докажите, что $\angle O_1AO_2 + \angle O_1BO_2 > 90^\circ$.

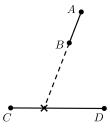
(Iman Maghsoudi)

Решение. Обозначим через X и Y точки касания окружностей с центрами O_1 и O_2 с ω соответственно. Пусть AC и BC — касательные, проведённые из точек A и B соответственно к окружности с центром O_1 , а AD и BD — касательные, проведённые из точек A и B к окружности с центром O_2 . Неравенство из условия равносильно неравенству $\angle CAD + \angle CBD > 180^\circ$. Тогда достаточно показать, что $\angle ACB + \angle ADB < 180^\circ$.

Точки C и D лежат вне окружности ω . Тогда $\angle ACB < \angle AXB$ и $\angle ADB < \angle AYB$. Но четырёхугольник AXBY вписанный, поэтому $\angle AXB + \angle AYB = 180^\circ$. Следовательно, $\angle ACB + \angle ADB < 180^\circ$ и утверждение доказано.

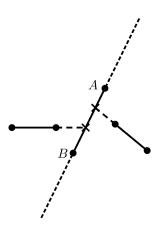


5. На плоскости расположено несколько попарно непересекающихся отрезков (отрезки не пересекаются даже в вершинах). Будем говорить, что отрезок AB разбивает отрезок CD, если продолжение отрезка AB пересекает отрезок CD в некоторой точке, отличной от точек C и D.



(a) Возможно ли такое расположение отрезков, что каждый отрезок, продолженный в обе стороны, разбивает ровно один отрезок с каждой из сторон?

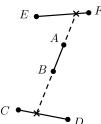
(b) Назовем отрезок *окружённым*, если в каждой полуплоскости относительно него найдётся ровно один отрезок, который его разбивает (например, отрезок AB на рисунке является окружённым). Возможно ли такое расположение отрезков, при котором каждый отрезок окружён?



(Morteza Saghafian)

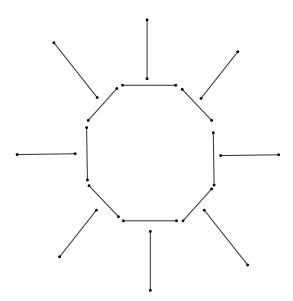
Решение.

(a) Нет. Рассмотрим выпуклую оболочку концов отрезков. Пусть A — вершина выпуклой оболочки, а AB — один из отрезков.



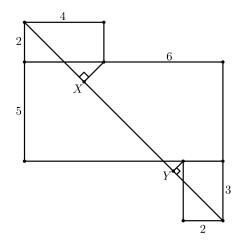
Существуют отрезки CD и EF, ограничивающие отрезок AB. Тогда точка A лежит внутри выпуклой оболочки точек C, D, E, F и, следовательно, не может быть вершиной исходной выпуклой оболочки. Противоречие.

(b) Да. Например, на рисунке ниже каждый отрезок окружен.



Продолжающие. Решения

1. Фигура на рисунке состоит из трех прямоугольников. Возле некоторых из отрезков подписаны их длины. Найдите длину отрезка XY.



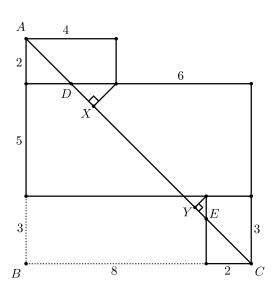
(Hirad Aalipanah)

Решение. Продлим стороны прямоугольника, получим треугольник ABC. Поскольку AB = BC, то

$$\angle BCA = \angle BAC = 45^{\circ}$$
.

Следовательно, используя теорему Пифагора, можно определить длины некоторых отрезков: $AD=2\sqrt{2},\ DX=\sqrt{2},\ CE=2\sqrt{2}$ и $EY=\frac{\sqrt{2}}{2}.$ Таким образом, имеем

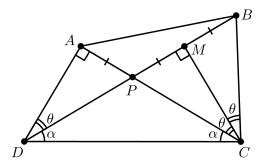
$$XY = AC - AD - DX - CE - EY = 10\sqrt{2} - 2\sqrt{2} - \sqrt{2} - 2\sqrt{2} - \frac{\sqrt{2}}{2} = \frac{9\sqrt{2}}{2}.$$



2. Диагонали AC и BD выпуклого четырехугольника ABCD пересекаются в точке P. Известно, что $\angle DAC = 90^\circ$ и $2\angle ADB = \angle ACB$. Докажите, что если $\angle DBC + 2\angle ADC = 180^\circ$, то 2AP = BP.

(Iman Maghsoudi)

Решение.



Пусть биссектриса угла PCB пересекает отрезок PB в точке M. Обозначим $\angle PCM = \angle PDA = \theta$ и заметим, что $\angle APD = \angle MPC$, откуда $\triangle PMC \sim \triangle PAD$, то есть $\angle PMC = 90^{\circ}$.

Теперь в треугольнике CPB биссектриса угла C совпадает с высотой, поэтому треугольник CPB — равнобедренный, и PM = MB, PC = CB. Из треугольника DBC имеем

$$\angle DBC + 2\theta + \angle PCD + \angle PDC = 180^{\circ}.$$

Это равенство вместе с условием $\angle DBC + 2\angle ADC = 180^\circ$ влечет равенство углов PCD и PDC. Следовательно, PC = PD и поэтому треугольники PMC и PAD равны, откуда $AP = PM = \frac{PB}{2}$.

3. Окружности ω_1 и ω_2 с центрами O_1 и O_2 соответственно пересекаются в точках A и B. Прямая O_1B вторично пересекает окружность ω_2 в точке C, прямая O_2A вторично пересекает окружность ω_1 в точке D. Пусть X — вторая точка пересечения AC и ω_1 , а Y — вторая точка пересечения BD и ω_2 . Докажите, что CX = DY.

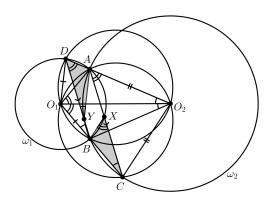
(Alireza Dadgarnia)

Решение. Нам понадобится следующая хорошо известная лемма.

Лемма. Пусть PQRS — выпуклый четырёхугольник, в котором RQ = RS, $\angle RPQ = \angle RPS$ и $PQ \neq PS$. Тогда PQRS является вписанным.

Доказательство леммы. Допустим противное, и пусть $P' \neq P$ — точка пересечения окружности, проходящей через точки R, S, Q с прямой PR. Так как P'QRS вписанный и RQ = RS, то $\angle SP'R = \angle QP'R$. Тогда в треугольниках SP'P и QP'P сторона PP' общая и $\angle SP'P = \angle QP'P$, а также $\angle P'PQ = \angle P'PS$. Это означает, что эти два треугольника равны, откуда PQ = PS, противоречие. Лемма доказана.

Вернемся к решению задачи.



Треугольники ADY и BXC подобны, так как

$$\angle ADY = \angle BXC = 180^{\circ} - \angle BXA, \quad \angle DYA = \angle BCX = 180^{\circ} - \angle AYB.$$

Заметим, что O_2 лежит на биссектрисе угла AO_1B , $O_2A = O_2C$ и также $O_1A \neq O_1C$. Используя лемму, получаем, что четырёхугольник O_1AO_2C вписанный. Аналогично получаем, что четырёхугольник O_2BO_1D вписанный. Тогда

$$\angle AYD = 180^{\circ} - \angle AYB = \angle O_1CA = \angle O_1O_2A = \angle O_1BD.$$

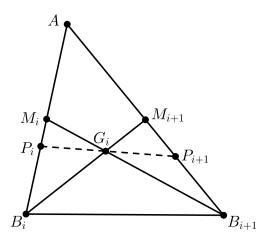
Это значит, что $AC \parallel BD$, откуда AY = BC. Но так как $\triangle ADY \sim \triangle BXC$, то эти два треугольника равны, откуда CX = DY.

4. Дан многогранник с треугольными гранями. Пусть P — произвольная точка, лежащая на его ребре, причем P не совпадает ни с серединой, ни с концами этого ребра. Положим $P_0 = P$. На каждом шаге точка P_i соединяется с центром масс одной из двух граней, содержащих точку P_i . Через P_{i+1} обозначим вторую точку пересечения полученной прямой с границей этой грани. Продолжим этот процесс для точки P_{i+1} и другой грани, содержащей P_{i+1} . Докажите, что, действуя подобным образом, пересечь все грани многогранника не удастся. (Центр масс треугольника — это точка пересечения его медиан.)

(Mahdi Etesamifard, Morteza Saghafian)

Решение. Обозначим через AB ребро, которому принадлежит точка P. Пусть M — середина AB. Без ограничения общности, будем считать, что P лежит между точками B и M. Докажем, что невозможно пройти через грань, которая не содержит точку A (такая грань в многограннике существует).

Пусть $B = B_0$, B_1 , B_2 , ...— вершины, соседние с A, перечисленные в порядке обхода. Пусть M_i — середина AB_i . Докажем по индукции, что для каждого i точка P_i лежит на ребре AB_i между точками B_i и M_i . Для i = 0 утверждение верно. Теперь допустим, что утверждение верно для i и рассмотрим треугольник AB_iB_{i+1} с центроидом G_i .



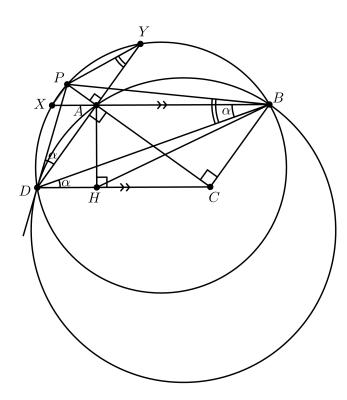
Точка P_i лежит между M_i и B_i , поэтому отрезок P_iG_i лежит «между» отрезками M_iG_i и B_iG_i , которые являются медианами треугольника. Поэтому P_{i+1} лежит на AB_{i+1} , между M_{i+1} и B_{i+1} . Утверждение доказано.

Мы доказали, что P_i лежит на AB_i , поэтому последовательность точек P_i «обходит» вершину A и, следовательно, не попадает в грани, не содержащие точку A.

5. Про параллелограмм ABCD известно, что $\angle DAC = 90^{\circ}$. Пусть H — основание перпендикуляра, опущенного из A на DC, P — такая точка на прямой AC, что прямая PD касается описанной окружности треугольника ABD. Докажите, что $\angle PBA = \angle DBH$.

(Iman Maghsoudi)

Решение.



Пусть прямые AB и AD вторично пересекают описанную окружность треугольника PDB в точках X и Y соответственно. Пусть $\angle CDB = \alpha$, $\angle ADB = \theta$. Тогда $\angle ABD = \alpha$, откуда $\angle ADP = \alpha$.

Также $\angle PDB = \angle PXB = \alpha + \theta$ и $\angle PAX = \angle ACD = \angle DAH$. Тогда пары треугольников APX и ADH, XAD и YAB подобны, откуда

$$\frac{AP}{AH} = \frac{AX}{AD} \,, \quad \frac{AY}{AB} = \frac{AX}{AD} \quad \Longrightarrow \quad \frac{AP}{AH} = \frac{AY}{AB}.$$

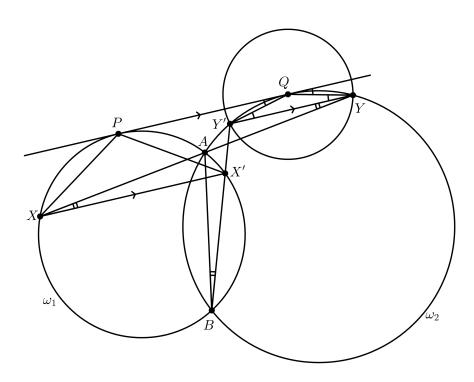
Поскольку $\angle HAB = \angle PAY = 90^\circ$, то треугольники APY и AHB подобны. Но тогда $\angle HBA = \angle PYA = \angle PBD$, откуда $\angle PBA = \angle DBH$.

Профессионалы. Решения

1. Окружности ω_1 и ω_2 пересекаются в точках A и B. Прямая PQ — их общая касательная, причем точка P лежит на ω_1 , а точка Q — на ω_2 . Рассмотрим произвольную точку X на окружности ω_1 . Прямая AX вторично пересекает ω_2 в точке Y. Точка Y' на окружности ω_2 , отличная от точки Y, такова, что QY = QY'. Обозначим вторую точку пересечения прямой Y'B с окружностью ω_1 через X'. Докажите, что PX = PX'.

(Morteza Saghafian)

Решение.



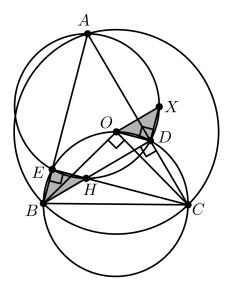
Поскольку треугольник QYY' равнобедренный, то $\angle QYY' = \angle QY'Y$. Так как PQ является касательной к окружности ω_2 , то $\angle QYY' = \angle Y'QP$, поэтому $YY' \parallel PQ$.

Из окружности ω_2 имеем равенство $\angle Y'YA = \angle Y'BA$, а из окружности ω_1 получаем $\angle ABX' = \angle AXX'$. Таким образом, $XX' \parallel YY' \parallel PQ$. Следовательно, $\angle PXX' = \angle X'PQ = \angle PX'X$, откуда PX = PX'.

2. Угол A остроугольного треугольника ABC равен 45° . Точки O и H — центр описанной окружности и ортоцентр треугольника ABC соответственно. Точка D — основание высоты, опущенной из вершины B. Обозначим через X середину дуги AH описанной окружности треугольника ADH, содержащей точку D. Докажите, что DX = DO.

(Fatemeh Sajadi)

Решение.



Так как AH — диаметр описанной окружности треугольника AHX и AX = XH, то $\angle AHX = 45^{\circ} = \angle ADX$. Также $\angle BOC = 2\angle A = 90^{\circ}$, поэтому точки O и D лежат на окружности с диаметром BC. Таким образом,

$$\angle ODA = \angle OBC = 45^{\circ} \implies \angle ODX = 90^{\circ}.$$

Заметим, что

$$\angle ACH = 90^{\circ} - \angle A = 45^{\circ} = \frac{1}{2} \angle AXH, \quad XA = XH,$$

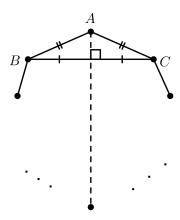
откуда X — центр описанной окружности треугольника ACH. Следовательно, OX — серединный перпендикуляр к AC и $OX \perp AC$. В треугольнике ODX биссектриса угла D совпадает с высотой, поэтому он равнобедренный и DX = DO.

3. Найдите все натуральные числа n > 3 такие, что существует выпуклый n-угольник, в котором каждая диагональ является серединным перпендикуляром по крайней мере к одной другой диагонали.

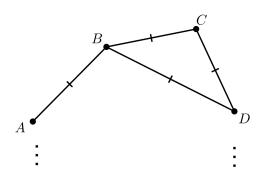
(Mahdi Etesamifard)

Решение. Пусть m — общее количество серединных перпендикуляров ко всем диагоналям в данном n-угольнике. Утверждение задачи означает, что m не меньше числа диагоналей. Однако общее количество серединных перпендикуляров ко всем диагоналям не превосходит количества диагоналей, поэтому каждая диагональ является серединным перпендикуляром ровно к одной другой диагонали. И обратно, для каждой диагонали d существует в точности одна диагональ d' такая, что d' — серединный перпендикуляр d.

Рассмотрим три соседние вершины n-угольника: B, A и C, где A лежит между B и C. Заметим, что BC — диагональ n-угольника, и только диагонали, выходящие из точки A, пересекаются с BC. В частности, диагональ, являющаяся серединным перпендикуляром к BC, проходит через A, поэтому AB = AC. Рассуждая аналогично, можно заключить, что все стороны n-угольника равны.



Аналогично рассмотрим четыре соседние вершины n-угольника A, B, C, D, расположенные в указанном порядке. Если n>4, то AD- диагональ n-угольника, и только диагонали, проходящие через B или C, пересекаются с AD. Следовательно, либо B, либо C лежит на серединном перпендикуляре к диагонали AD. Без ограничения общности, будем считать, что BA=BD. Но BA=BC=CD, откуда треугольник BCD равносторонний и $\angle BCD=60^\circ$. (В противном случае мы бы имели $\angle ABC=60^\circ$.)



Таким образом, среди любых двух соседних углов n-угольника хотя бы один из них равен 60° . Тогда в n-угольнике по крайней мере $\frac{n}{2}$ углов величиной 60° . Как известно, общее число углов величиной 60° в n-угольнике при n>3 не превосходит двух (поскольку сумма внешних углов выпуклого n-угольника равна 360°). Поэтому $\frac{n}{2}\leqslant 2$, откуда $n\leqslant 4$, противоречие.

Ясно, что ромб удовлетворяет требуемому в задаче условию. Поэтому наибольшее n равно 4.

4. Пусть ABCD — описанный четырехугольник, диагонали которого не перпендикулярны. Биссектрисы углов между диагоналями AC и BD пересекают отрезки AB, BC, CD, DA в точках K, L, M, N соответственно. Докажите, что если четырехугольник KLMN вписанный, то и четырехугольник ABCD вписанный.

(Nikolai Beluhov, Bulgaria)

Решение. Пусть P — точка пересечения диагоналей AC и BD. Сначала докажем, что прямые KL и MN не параллельны. Предположим противное, т.е. $KL \parallel MN$. Поскольку четырехугольник KLMN вписанный, то он является равнобедренной трапецией, откуда

$$KN = ML, PK = PL, PM = PN.$$

Также верно равенство

$$\frac{KP}{PM} = \frac{PL}{PN}.$$

Пусть $AP=x,\,BP=y,\,CP=z$ и $DP=t,\,$ а $\angle APB=2\alpha$ и $\angle BPC=2\theta.$ Тогда по формуле длины биссектрисы

$$KP = \frac{xy}{x+y}\cos\alpha; \quad PM = \frac{zt}{z+t}\cos\alpha \ \Rightarrow \ \frac{KP}{PM} = \frac{\frac{1}{z} + \frac{1}{t}}{\frac{1}{x} + \frac{1}{y}}.$$

Аналогично

$$\frac{PL}{PN} = \frac{\frac{1}{x} + \frac{1}{t}}{\frac{1}{y} + \frac{1}{z}}.$$

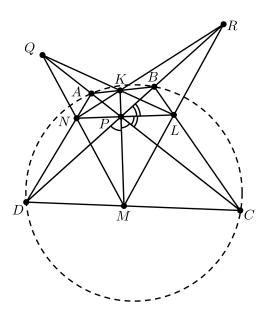
Подставив полученные выражения в равенство $\frac{KP}{PM} = \frac{PL}{PN}$, получим

$$\frac{1}{yz} + \frac{1}{z^2} + \frac{1}{zt} = \frac{1}{tx} + \frac{1}{x^2} + \frac{1}{xy} \implies \left(\frac{1}{x} - \frac{1}{z}\right) \left(\frac{1}{x} + \frac{1}{y} + \frac{1}{z} + \frac{1}{t}\right) = 0,$$

откуда x = z. Воспользовавшись этим равенством, получим

$$\frac{xy}{x+y}\cos\alpha = \frac{yz}{y+z}\cos\theta \ \Rightarrow \ \cos\alpha = \cos\theta.$$

Но $\theta = 90^{\circ} - \alpha$, поэтому $\alpha = \theta = 45^{\circ}$, откуда $AC \perp BD$, противоречие. Таким образом, утверждение доказано. Аналогично доказывается, что прямые KN и LM не параллельны.



По теореме Менелая для треугольников ABC и ADC прямые KL и MN пересекаются в точке Q на прямой AC такой, что $\frac{AQ}{QC} = \frac{AP}{PC}$. Аналогично прямые LM и NK пересекаются в точке R на прямой BD такой, что $\frac{BR}{RD} = \frac{BP}{PD}$.

Пусть вписанная окружность четырехугольника ABCD касается его сторон в точках K', L', M' и N'. По теореме Брианшона для шестиугольника AK'BL'CD прямые AL', CK' и BD пересекаются в одной точке. Применив теоремы Чевы и Менелая для треугольника ABC, получим, что точки K', L' и Q лежат на одной прямой. Аналогично точки M', N' и Q лежат на одной прямой, а прямые L'M' и N'K' пересекаются в точке R.

По теореме Брианшона отрезки K'M' и L'N' пересекаются в точке P. Следовательно, диагонали и противоположные стороны четырёхугольников KLMN и K'L'M'N' пересекаются в вершинах треугольника PQR. Тогда треугольник PQR является автополярным относительно описанных окружностей этих четырёхугольников, то есть описанная около четырёхугольника KLMN окружность и ω совпадают.

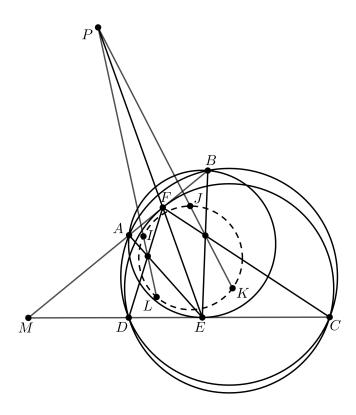
В силу того, что K — общая точка AB и ω , то точка K совпадает с точкой K'. Аналогично, совпадают пары точек L и L', M и M' и N и N'. Следовательно, биссектриса KM угла между AC и BD образует равные углы с AB и CD, откуда получаем, что ABCD — вписанный.

Замечание. Треугольник ABC называется автополярным относительно окружности ω , если прямые AB, AC и BC являются полярами точек C, B, A относительно окружности ω соответственно. Для тупоугольного треугольника ABC существует ровно одна окружность, относительно которой он является автополярным, а для остроугольного треугольника такой окружности не существует. Действительно, нетрудно видеть, что центр окружности должен совпадать с ортоцентром H треугольника ABC, а радиус окружности должен удовлетворять равенству $R^2 = \overrightarrow{HA} \cdot \overrightarrow{HB}$.

5. Дан вписанный четырехугольник ABCD. Окружность, проходящая через точки A и B, касается отрезка CD в точке E. Другая окружность, проходящая через точки C и D, касается отрезка AB в точке F. Отрезки AE и DF пересекаются в точке G, отрезки BE и CF пересекаются в точке H. Докажите, что центры вписанных окружностей треугольников AGF, BHF, CHE, DGE лежат на одной окружности.

(Le Viet An, Vietnam)

Решение.



Пусть I, J, K, L — центры вписанных окружностей треугольников AGF, BHF, CHE, DGE соответственно. Обозначим через ω описанную окружность четырехугольника ABCD. Если $AB \parallel CD$, то ABCD является равнобедренной трапецией, и легко видеть, что IJKL — также равнобедренная трапеция.

Пусть $AB \not\parallel CD$. Обозначим через M точку пересечения прямых BA и CD. Записав степень точки относительно ω и описанных окружностей треугольников AEB и CDF, получим:

$$MA \cdot MB = MD \cdot MC = ME^2 = MF^2.$$

Таким образом, ME = MF, откуда $\angle MEF = \angle MFE$. В силу того, что ME и MF касаются описанных окружностей треугольников AEB и CDF соответственно, имеем равенства

$$\angle MEA = \angle MBE$$
, $\angle MEF = \angle MFE$.

Отсюда

$$\angle AEF = \angle MEF - \angle MEA = \angle MFE - \angle MBE = \angle BEF.$$

Последнее равенство означает, что EF — биссектриса угла AEB. Аналогично, FE — биссектриса угла CFD. Заметим, что точки $H,\,J,\,K$ лежат на одной прямой и $\angle FJH = 90^\circ + \frac{\angle FBH}{2}$. Тогда

$$\angle FJK = 90^{\circ} + \frac{\angle MBE}{2} = 90^{\circ} + \frac{\angle MEA}{2} = 90^{\circ} + \frac{180^{\circ} - \angle AEC}{2} = 180^{\circ} - \frac{\angle AEC}{2} = 180^{\circ} - \frac{\angle AEB + \angle BEC}{2} = 180^{\circ} - (\angle FEB + \angle BEK) = 180^{\circ} - \angle FEK.$$

Полученное равенство означает, что четырёхугольник EFJK является вписанным. Аналогично четырёхугольник EFIL вписанный.

Так как EF биссектриса углов GEH и GFH, то треугольники GEF и HEF равны. Следовательно, EG=EH и FG=FH, и поэтому $\frac{GE}{GF}=\frac{HE}{HF}=k$.

Рассмотрим три прямые: внешнюю биссектрису угла G треугольника GEF, внешнюю биссектрису угла H треугольника HEF и прямую EF. Согласно последнему равенству, возможны два случая:

- ullet Эти прямые попарно параллельны. Тогда четырёхугольники EFJK и EFIL равнобедренные трапеции. Следовательно, отрезки EF, JK и IL имеют общий серединный перпендикуляр, поэтому IJKL также равнобедренная трапеция.
- \bullet Эти прямые пересекаются в точке P,где $\frac{PE}{PF}=k.$ Тогда

$$PJ \cdot PK = PE \cdot PF = PI \cdot PL$$

где первое равенство — это степень точки P относительно описанной окружности четырёхугольника EFJK, а второе — степень точки P относительно описанной окружности четырёхугольника EFIL. Но это равенство означает, что четырёхугольник IJKL вписанный.