11-2

- **1.** Для натуральных a, m, n докажите, что если $a^n 1 \\\vdots \\ a^m 1$, то $n \\\vdots \\ m$.
- **2.** Для натуральных a>1 и n докажите, что $\varphi(a^n-1) \vdots n$.
- **3.** Докажите, что $2^{3^k} + 1 : 3^{k+1}$ для любого натурального k.
- **4. а)** Докажите, что последние 5 цифр числа $4^{5^6}+6^{5^4}$ являются нулями.
- **b)** На сколько нулей оканчивается число $4^{5^6} + 6^{5^4}$?
- 5. Найдите все такие пары натуральных чисел а и k, что для всякого натурального n, взаимно простого с a, число $a^{k^n+1}-1$ делится на n.
- **6. а)** Докажите, что для любого натурального a > 2 существует бесконечно много n таких, что $a^n - 1 \vdots n$.
- b) Докажите, что для любого натурального a > 2 существует бесконечно много n таких, что $a^n - 1 : n^2$.

11-2

ТЧшный разнобой

22 ноября 2018

- **1.** Для натуральных a, m, n докажите, что если $a^n 1 \\\vdots \\ a^m 1$, то $n \\\vdots \\ m$.
- **2.** Для натуральных a > 1 и n докажите, что $\varphi(a^n 1) : n$.
- **3.** Докажите, что $2^{3^k} + 1 : 3^{k+1}$ для любого натурального k.
- **4. а)** Докажите, что последние 5 цифр числа $4^{5^6} + 6^{5^4}$ являются нулями.
- **b)** На сколько нулей оканчивается число $4^{5^6} + 6^{5^4}$?
- **5.** Найдите все такие пары натуральных чисел a и k, что для всякого натурального n, взаимно простого с a, число $a^{k^n+1}-1$ делится на n.
- **6. а)** Докажите, что для любого натурального a > 2 существует бесконечно много n таких, что $a^n - 1 : n$.
- b) Докажите, что для любого натурального a > 2 существует бесконечно много n таких, что $a^n - 1
 otin n^2$.