[ЦПМ, кружок по математике, 8 класс]

17 февраля 2018

Убегающие

[2017–2018] 17 ¢

Конструктивы в ТЧ, часть 2

- **1.** Конечно или бесконечно множество целочисленных решений уравнения (**a**) $x^2 xy y^2 = 1$; (**b**) $x^2 xy y^2 = -1$?
- **2.** Padukan натурального числа N (обозначается rad(N)) это произведение всех простых делителей числа N, взятых по одному разу. Например, $rad(120) = 2 \cdot 3 \cdot 5 = 30$. Существует ли такая тройка попарно взаимно простых натуральных чисел A, B, C, что A + B = C и $C > 1000 \cdot rad(ABC)$?
- **3.** Сумма шестых степеней шести целых чисел на единицу больше, чем их ушестерённое произведение. Конечно или бесконечно множество шестерок целых чисел с таким свойством?
- **4.** Существуют ли такие натуральные числа a, b, c > 1, что $a^2 1$ делится на $b, b^2 1$ делится на c и $c^2 1$ делится на a, причем a + b + c > 2018?
- **5.** Натуральное число N представляется в виде $N=a_1-a_2=b_1-b_2=c_1-c_2=d_1-d_2$, где a_1 и a_2 квадраты, b_1 и b_2 кубы, c_1 и c_2 пятые степени, а d_1 и d_2 седьмые степени натуральных чисел. Обязательно ли среди чисел a_1 , b_1 , c_1 и d_1 найдутся два равных?

Письменные задачи

- **6.** Верно ли, что существует бесконечно много арифметический прогрессий, состоящих из 2017 различных натуральных чисел таких, что в каждой из них произведение всех членов является точной 2018-й степенью?
- 7. Существуют ли три взаимно простых в совокупности натуральных числа a, b и c, для которых a^2 делится на b+c, b^2 делится на a+c, c^2 делится на a+b?

 [ЦПМ, кружок по математике, 8 класс]
 Убегающие

 [2017–2018]
 17 февраля 2018

Конструктивы в ТЧ, часть 2

- **1.** Конечно или бесконечно множество целочисленных решений уравнения (**a**) $x^2 xy y^2 = 1$; (**b**) $x^2 xy y^2 = -1$?
- **2.** Paдикал натурального числа N (обозначается rad(N)) это произведение всех простых делителей числа N, взятых по одному разу. Например, $rad(120) = 2 \cdot 3 \cdot 5 = 30$. Существует ли такая тройка попарно взаимно простых натуральных чисел A, B, C, что A + B = C и $C > 1000 \cdot rad(ABC)$?
- **3.** Сумма шестых степеней шести целых чисел на единицу больше, чем их ушестерённое произведение. Конечно или бесконечно множество шестерок целых чисел с таким свойством?
- **4.** Существуют ли такие натуральные числа a, b, c > 1, что $a^2 1$ делится на $b, b^2 1$ делится на c и $c^2 1$ делится на a, причем a + b + c > 2018?
- **5.** Натуральное число N представляется в виде $N = a_1 a_2 = b_1 b_2 = c_1 c_2 = d_1 d_2$, где a_1 и a_2 квадраты, b_1 и b_2 кубы, c_1 и c_2 пятые степени, а d_1 и d_2 седьмые степени натуральных чисел. Обязательно ли среди чисел a_1 , b_1 , c_1 и d_1 найдутся два равных?

Письменные задачи

- **6.** Верно ли, что существует бесконечно много арифметический прогрессий, состоящих из 2017 различных натуральных чисел таких, что в каждой из них произведение всех членов является точной 2018-й степенью?
- **7.** Существуют ли три взаимно простых в совокупности натуральных числа a, b и c, для которых a^2 делится на b+c, b^2 делится на a+c, c^2 делится на a+b?