Параллелограммы в треугольнике

В течение двух занятий мы рассмотрим геометрическую конструкцию, которая некоторым из вас знакома. В процессе решения задач вы получите ряд важных фактов геометрии треугольника.

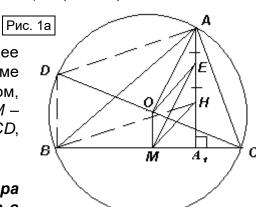
Рассмотрим остроугольный треугольник ABC, O — центр описанной около него окружности, AA_1 — высота, H — ортоцентр, M — середина BC (см. рис. 1a).

1) Докажем, что
$$OM = \frac{1}{2} AH$$
.

Решение. Проведем описанную и окружность и ее диаметр *CD*. Тогда $\angle DBC = 90^\circ$, значит, *BD* || *AH*. Кроме того, *DA* \perp *AC* и *BH* \perp *AC*, поэтому, *DA* || *BH*. Таким образом, *BDAH* — параллелограмм. Так как *O* — середина *DC*, *M* — середина *BC*, то *OM* — средняя линия треугольника *BCD*,

следовательно, *OM* || *BD* || *AH* и *OM* =
$$\frac{1}{2}$$
 BD = $\frac{1}{2}$ *AH*.

Таким образом, расстояние от центра описанной окружности до стороны треугольника в два раза меньше расстояния от противолежащей вершины до ортоцентра.



2) Пусть *E* – середина отрезка *АН*. Докажите, что **четырехугольники ОМНЕ и** *ОМЕА* – параллелограммы.

Решение. $OM \parallel AH$ и OM = AE = EH.

Упражнения и задачи для самостоятельного решения

- **1.** Докажите, что полученные утверждения справедливы и для тупоугольного треугольника.
- **2.** В треугольнике ABC: M середина BC, O центр описанной окружности, R ее радиус, H ортоцентр, E середина AH. Докажите, что: а) ME = R; б) медиана AM делит отрезок OE пополам.
- **3.** Треугольники *ABC* и A_1BC вписаны в одну и туже окружность, H и H_1 их ортоцентры. Докажите, что $AH = A_1H_1$.
- **4.** В треугольнике ABC: BC = a; $\angle BAC = \alpha$, H ортоцентр, R ее радиус описанной окружности. Докажите, что: a) $AH = 2R|\cos\alpha|$; б) $AH^2 = 4R^2 a^2$.
- **5.** В остроугольном треугольнике *ABC*: AA_1 высота, M середина *BC*, O центр описанной окружности, H ортоцентр, F середина *OH*. Найдите угол A_1FM , если $\angle ABC = \beta$, $\angle ACB = \gamma$.
- **6.** В остроугольном треугольнике *ABC* биссектриса *AL* пересекает отрезок *ME* в точке *N* (M середина *BC*, E середина *AH*, где H ортоцентр). Докажите, что: a) NE = AE; б) $\angle ANH = 90^{\circ}$.
- **7.** Через ортоцентр H треугольника ABC провели прямые, параллельные сторонам AB и AC и пересекающие прямую BC в точках F и D соответственно. Через точки D и F проведены перпендикуляры к BC, пересекающие AB и AC в точках D и F соответственно. Докажите, что прямая D^*F пересекает окружность, описанную около ABC, в точках, диаметрально противоположных точкам B и C.
- **8.** В треугольнике *ABC O* центр описанной окружности, *H* ортоцентр. Докажите, что $\overline{OH} = \overline{OA} + \overline{OB} + \overline{OC}$ (формула Гамильтона).
- **9.** а) Докажите, что $OH^2 = 9R^2 \left(a^2 + b^2 + c^2\right)$, где O центр окружности, описанной около треугольника со сторонами a, b и c, R ее радиус, H ортоцентр треугольника. б) Среди всех треугольников, вписанных в данную окружность, найдите тот, у которого сумма квадратов сторон наибольшая.

